
NASr-'21 (02)

Orbital Regression of

Due to the Combined

The Sun, the Moon

Synchronous

Gravitational

and the

Satellites

Effects of

Oblate Earth

.:R. H. Frick-

GPO PRICE $

CFSTI PRICE(S) $

• . . 4 .... 5 -

August 1967

Hard copy (HC)

Microfiche (M F)

ff 653 July 65

R-454-NASA

A REPORT PREPARED FOR THE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(PAGES) -
d

J

(NASA CR OR TMX OR AD NUMBER)

(THRU)

!
(CODE)

.:_Z 0
(CATEGORY)

The I  lflD 
1700 MAIN ST. • SANTA MONICA * CALIFORNIA • 90406



This research is sponsored by the National Aeronautics and Space Administration

under Gontract No. NASr-21. This report does not necessarily represent the views

of the National Aeronautics and Space Administration.



August 1967 RB-454

R-454-NASA, Orbital Regression of Synchronous Satellites Due to

the Combined Gravitational Effects of the Sun_ the Moon_ and the

Oblate Earth, R. H. Frick, RAND Report, August 1967, 186 pp.

PURPOSE: To analyze the long-term behavior of earth satellites due to the gravita-

tional effects of the sun, the moon, and the oblate earth.

RELATED TO: RAND's continuing study of satellite orbit control requirements for NASA.

The study extends the results obtained in R-399-NASA, Perturbations of a Synchro-
nous Satellite, May 1962.

DISCUSSION AND METHODOLOGY: Now that long-lived earth satellites are orbited on a

relatively permanent basis, it is important to know the effect of long-term or-

bital perturbations, and the cost of controlling them. It is also interesting

to consider the effect of such perturbations on the motion of the increasing

debris in orbit. While the earth's inverse-square law gravitational field is

the major attraction on a satellite, perturbing forces arise from the attraction

of the sun, the moon, and the oblateness of the earth. The resultant force field

is neither central in direction nor inverse-square in magnitude. The components

of the perturbing forces that are normal to the orbital plane perturb the plane's

N...._,o orientation relative to inertial space. Those

p_one lying in the orbital plane cause changes in
Earth's polar Inertial reference

axis axis the shape and orientation of the orbit in its

plane. The in-plane motion was analyzed in

R-399-NASA; in the present study emphasis is

on the determination of the orbital plane it-

self. The analysis applies to satellites in

near-circular orbits at any inclination and

with orbital radii less than i0 earth radii.

The perturbed motion of an uncontrolled satel-

lite is described as seen from inertial space

and as seen from the rotating earth.

PRINCIPAL FINDINGS: The motion of the orbital

plane is such that its normal describes a coni-

cal surface relative to inertial space as shown

in the figure. The ground trace of a synchro-

nous-altitude orbit lying in the reference

plane is a figure eight with crossing-point on

the equator and a maximum latitude excursion of

Eq_,o_ 7020'; this does not vary with time. An orbit

at an angle to the reference plane has a figure-

eight ground trace which varies with the re-

p_ono gression period. For a synchronous orbit that

eor,h,.... is originally equatorial and "stationary," the

ground trace develops from a point to a figure

eight, with a latitude excursion of 14o40 ' after 26.6 years, and then reverses the

process. The total regression period is about 53 years. A fuel expenditure pro-

portional to the sine of twice the inclination angle relative to the reference

plane is required to stop orbital regression.
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PREFACE

As part of a continuing RAND study for the National Aeronautics

and Space Administration of the perturbations of earth satellites and

resulting orbital control requirements, this Report investigates the

gravitational effects of the sun, the moon and the oblate earth on the

orbital behavior of earth satellites. An extension of the results

obtained earlier in R-399-NASA, the analysis provides determination of

orbital control propulsion requirements and of the orbital regression

of earth satellites with no restriction on orbital altitude or incli-

nation. The general analytical solution for the regression of a satel-

lite obtained in the R can also be specialized to explain lunar re-

gression and the behavior of low-altitude satellites.

The Report should be of interest to people dealing with satellite

systems which require high-precision long-term orbital control.
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SUMMARY

This Report presents an analysis of the long-term behavior of earth

satellites due to the gravitational effects of the sun, the moon and the

oblate earth. The importance of these effects has increased in recent

years because of interest in more precise orbital control and an increase

in expected payload lifetime. The fuel requirement for maintaining pre-

cise long-term orbital control in the presence of these gravitational

perturbations tends to dominate the overall fuel requirement for orbit

and attitude control. As a result, it is of increasing interest to de-

termine first whether the magnitude of the long-term orbital perturba-

tions of an uncontrolled satellite is compatible with the requirements

of a given satellite mission during its expected payload lifetime. If

the orbital perturbations exceed acceptable values, it is necessary to

investigate methods whereby these perturbations can be controlled,

either actively or passively. In addition, it is of interest to con-

sider the effect of these long-term perturbations on the motion of the

increasing collection of debris in orbit. This Report deals with all

of these problems.

The analysis presented here applies to satellites in near-circular

orbits at any inclination and with orbital radii which are small compared

to the radius of the moon's orbit (i.e., less than i0 earth radii). The

formulation takes into account the rotation of the earth around the sun,

the rotation of the earth-moon system about its center of mass and the

regression of the moon's orbital plane about the normal to the ecliptic.

The major effect of the perturbing influences considered is to pro-

duce motion of the orbital plane relative to inertial space. The nature



vi

of this motion can be completely described by the trace of the normal

to the orbital plane on a sphere concentric with the earth. It is shown

that for an orbit of a given radius an orbital orientation can be found

which remains invariant relative to inertial space. This invariant plane

has a commonintersection with the earth's equatorial plane and the plane

of the ecliptic, while its inclination to the latter is always less than

that of the equatorial plane. For low-altitude orbits, the invariant

plane is very nearly equatorial, with an inclination of 23o27' relative

to the ecliptic. As the orbital altitude increases, the value of the

inclination decreases to 16°7' at synchronous altitude and approaches

zero for extremely high orbits.

For an orbit of a given altitude, the trace of the normal to the

invariant plane on the sphere described above is a single point between

the earth's polar axis and the normal to the ecliptic. For orbits of

the sameradius but different orientations, two types of motion are pos-

sible. If the initial inclination of the orbit relative to the corre-

sponding invariant or reference plane is less than about 80° , the normal

to the orbital plane rotates about the normal to the reference plane with

an essentially constant angular rate and inclination angle. The resulting

trace on the sphere is a circle with center on the normal to the reference

plane. If the initial inclination is in excess of 80°, the trace of the

normal to the orbital plane on the sphere may be an ellipse with its

center on a line in the direction of the vernal equinox and major axis

in the reference plane.

The regression period at zero inclination varies from .i year for

a surface orbit to about 53 years for a synchronous orbit and a maximum

of about 75 years for an orbit of radius equal to 9 earth radii. As the
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inclination increases, the period varies inversely as the cosine of the

inclination angle. On the other hand, the regression period corresponding

to the elliptical contours has a minimumvalue as the ellipse approaches

a point, and increases toward infinity as the major axis approaches 90° .

However, since high-inclination orbits are of relatively little interest,

the emphasis in this Report is on the first type of regression, which is

illustrated by the frontispiece.

It should be noted that superposed on this steady-state motion are

oscillatory perturbations in both regression rate and orbital inclination

which cause the instantaneous position of the normal to the orbital plane

to oscillate relative to its steady-state motion. However, it is shown

that the displacement is less than half a degree.

It is of particular interest to observe the effect of this orbital

regression on the relative motion of synchronous altitude satellites as

seen from the rotating earth. Since the orbital altitude is assumedto

be constant, this relative motion is completely described by the trace

of the subsatellite point on the earth's surface.

The reference plane corresponding to a synchronous altitude orbit

has an inclination of 16°7' relative to the ecliptic, as comparedwith

an inclination of 23o27' for the earth's equatorial plane. Since the

orientation of a synchronous orbit in this plane remains invariant rela--

tive to inertial space, its inclination of 7o20' relative to the earth's

equatorial plane is also invariant. As a result, the trace of the sub-

satellite point on the surface of the rotating earth is the character-

istic figure-eight pattern with a maximumlatitude excursion on either

side of the equator equal to the inclination angle of 7o20' relative to
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the equatorial plane. In addition, the maximum longitude excursion

relative to the equatorial crossing position is of the order of _15 min

of arc. This ground trace is repeated once each orbit with no variation

in size or shape. Similarly, if the orbital plane of a synchronous orbit

is perpendicular to the reference plane and polar relative to the earth,

it remains stationary relative to inertial space, and its ground trace

on the rotating earth also repeats itself on each orbit. However, for

such an orbit, the ground trace varies from -90 ° to +90 ° in latitude

each day.

For any other inclination of a synchronous orbit relative to the

reference plane, it is found that the maximum latitude or amplitude of

the figure eight varies as a function of time. This is due to the fact

that the maximum latitude is equal to the inclination of the orbit rela-

tive to the equatorial plane, and although the inclination relative to

the reference plane is fixed, that relative to the equatorial plane varies

as the orbit regresses. The resulting variation in the ground trace am-

plitude has a periodicity equal to that of the regression and a magnitude

which can never exceed 14o40 ' In addition, it is found that the longi-

tude of the equatorial crossing also oscillates with the regression

period and with an amplitude which may be as large as 7o20 ', depending

on t_e orbital inclination relative to the reference plane.

In regard to these variations in the size and shape of the ground

trace, it is of particular interest to consider the long-term behavior

of a satellite which is initially in a synchronous equatorial orbit.

Such a satellite is ordinarily referred to as stationary since it appears

to be fixed relative to the earth. However, its orbit is actually in-

clined to its reference plane at an angle of 7020 ' and has a regression
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period of about 53 years. As the orbital plane regresses, its inclina-

tion to the equatorial plane increases from 0° at an average initial

rate of .863 ° per year. At the end of half the regression period this

inclination reaches a maximum of 14o40 ', after which it decreases sym-

metrically to 0° after a complete regression period. Since the maximum

latitude excursion during an orbit is equal to the orbital inclination

to the equator, the resultant ground trace is initially an equatorial

point but develops into a figure eight which reaches a maximum amplitude

of 14o40 ' before decreasing to the original equatorial point at the end

of the regression period. During this cycle, the position of the equa-

torial crossing oscillates with the regression period with an amplitude

of .47 °, moving to the east of its initial position during the first

half of the cycle and to the west during the second half. It should be

noted that these variations in longitude are superposed on the shorter

period (_ 2-year) oscillations due to the equatorial ellipticity de-

scribed in Ref. i.

It is seen that a passive satellite cannot remain truly stationary

relative to the rotating earth, and that its earth trace can remain in-

variant only for certain orbital inclinations. Since a given satellite

mission may require a fixed ground trace which is not inherently in-

variant, it is of interest to determine the amount of control necessary

to produce the desired invariance. It is seen that such an invariant

ground trace can exist only if the orientation of the orbital plane re-

mains fixed in inertial space. By applying appropriate control impulses

normal to the orbital plane, it is possible to reduce the steady-state

orbital regression rate to zero. Under these conditions, the orbital
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orientation and the resulting ground trace have the desired invariance.

The control impulse required per year to achieve this invariance is pro-

portional to the sine of twice the inclination angle of the orbit to its

reference plane. Thus, the magnitude of the control impulse per year

depends as follows on the desired value of the ground trace amplitude.

For an amplitude of 0 °, the required control impulse has an average

value of 152 ft/sec/year, which decreases to zero for an amplitude of

7o20 ' , after which it increases to a maximum of 580 ft/sec/year for an

amplitude of 45 ° . The impulse requirement for amplitudes between 45 °

and 90 ° is a mirror image of that from 0 ° to 45 °, decreasing to zero

at 82o40 ' and increasing again to 152 ft/sec/year at 90 ° . It should

be noted that these values represent a long-term average control re-

quirement, neglecting the oscillatory components of the orbital re-

gression. In the event that it is necessary to control these oscilla-

tory variations, the control requirement in a given year might deviate

from its average value by as much as 30 ft/sec, depending on the ampli-

tude and phase of the oscillatory terms.

If instead of an invariant ground trace, a given mission requires

merely an upper limit on its latitude excursion, it may be possible to

satisfy this condition passively. If the initial orbital inclination

to the equator is made equal to the upper limit of the latitude excur-

sion, then by a suitable choice of the initial regression phase the in-

clination to the orbital plane will decrease to 0° before it again in-

creases to its initial value. J

In this way the time during which the latitude excursion remains

below its upper limit is maximized. If this time is longer than the



xi

expected payload lifetime, this passive technique can be used to satisfy

the mission requirement. However, the decision regarding the use of

active or passive orbit control depends on the tolerances in ground

trace amplitude and the required mission lifetime.

Finally, the analysis of orbital regression developed here for

artificial satellites is extended to include the regression of the moon.

This requires an expansion of the basic theory to include higher order

terms as shown in Appendix E.
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I. INTRODUCTION

In the ten years since the launching of the first Sputnik, a rather

impressive amount of hardware has been placed in orbit around the earth

in the fulfillment of various satellite missions. During the early years

of this period, the lifetime of a given satellite mission was short and

there was little interest in precise long-term orbital control. However,

in recent years, as technology has developed which can take advantage

of precisely controlled synchronous orbits with long-life potential, it

has become important to know (i) the effect of long-term orbital per-

turbations on the satellite mission, and (2) the cost of controlling

these perturbations.

It is well known that if the only force on a satellite is the in-

verse-square-law gravitational attraction of the earth, then the re-

suiting orbit is an ellipse with one focus at the earth's center. In

addition, the direction of the normal to this orbital plane remains

fixed relative to inertial space. While the earth's inverse-square field

is the major attraction on the satellite, it is necessary to consider

the perturbing forces which might produce long-term changes in the basic

orbital motion described above. Three such forces are those due to the

attractions of the sun and the moon and that arising from the oblateness

of the earth. Since the resultant force field when these effects are in-

cluded is neither central in direction nor inverse-square in magnitude,

the resulting orbital perturbations may be of two types. Those components

of the perturbing forces which are normal to the orbital plane produce

perturbations in the plane's orientation relative to inertial space.

Those components which lie in the plane cause alterations in the shape



and orientation of the orbit in its plane.

In Ref. i, the effects of the sun and the moon on a satellite in

a synchronous equatorial orbit are determined. The results show that

the in-plane perturbations are of the nature of small amplitude oscil-

lations in the satellite's position relative to its nominal unperturbed

position. The maximum excursion is of the order of 45 mi. It is also

found that the perturbations in the attitude of the orbital plane are

of the nature of a slow change in its inclination to the equatorial

plane at a rate of about .85°/year. The analysis also indicates a slow

sinusoidal increase to a maximum inclination of about 20 ° and a return

to 0 ° after a period of about 73 years. However, these two values are

only approximate, since a 20 ° angle exceeds the small angle assumption

used in the perturbation analysis.

This Report gives a more general determination of the orbital per-

turbations resulting from the gravitational attractions of the sun and

moon and from the oblateness of the earth, and it places no restriction

on the magnitude of the orbital inclination. The emphasis is primarily

on the determination of the motion of the orbital plane since it is not

anticipated that the in-plane motion will differ greatly from that de-

termined in Ref. i. By means of the analysis presented here, the per-

turbed motion of an uncontrolled satellite is described both as seen fresh

inertial space and as seen from the rotating earth. In addition, the fuel

requirement to maintain a fixed orientation of the orbital plane relative

to inertial space is determined.



II. METHOD OF ANALYSIS

STATEMENT OF THE PROBLEM

The problem to be solved in this Report can be stated as follows:

If a satellite is in a circular orbit around the earth with a known

initial orientation of its orbital plane relative to inertial space,

determine the motion of this orbital plane as it is affected by the

gravitational attraction of the sun, the moon and the oblate earth.

For the purposes of this analysis it is assumed that the orbital

altitude is sufficiently high that forces due to residual drag can be

neglected. In addition, by assuming a small area-to-mass ratio for the

orbiting object, the effects of solar radiation pressure can also be

neglected. The ellipticity of the earth's equatorial section is also

omitted since its effect on orbital regression is negligible.

Finally, the positions of the sun and the moon relative to the earth

are specified as known functions of time according to the following model.

The center of mass of the earth-moon system moves on a circular orbit

around the sun with a period of one sidereal year, and the plane of the

motion is that of the ecliptic. The earth and moon rotate about their

common center of mass with a constant separation and a period of one

sidereal month. The plane of this rotation is inclined at an angle of

5o8 ' to the ecliptic and regresses about the normal to the ecliptic

with a period of 18.6 years.

Strictly speaking, the plane of the ecliptic is defined by the

motion of the earth's center of mass; however this differs in orienta-

tion by about i see of arc from the plane defined above.



4

DEFINITION OF COORDINATES

Reference Systems

In the formulation of the equations of motion and the description

of the resulting motion, it is convenient to define the following ref-

erence systems.

Xs' YS' Zs" This is an inertial reference system with its origin

at the center of the sun; its XsY S plane is the ecliptic and its xs axis

is in the direction of the earth at the time of the vernal equinox.

Xo' Yo' z . This and all the remaining reference systems are geo-o

centric. This particular one maintains its axes parallel to the corre-

sponding ones in the xS, YS' Zs system. Thus, every point of this sys-

tem is under a constant acceleration in a direction parallel to the earth-

sun llne. The unit vectors associated with this and the previous sys-

tem are represented as io, Jo
' O"

Xl' YI' Zl" This system is rotated relative to Xo, Yo' Zo through

an angle _i about their common x axes as shown in Fig. i. This system

is the one relative to which the motions of the orbital plane are ex-

pressed. The appropriate value of _I is determined in the course of the

analysis. The associated unit vectors are represented as T I, 71, E 1.

XG' YG' ZG" This system has a common x axis with the two previous

systems, while the xGY G plane is the earth's equatorial plane, which

makes an angle _ = 23o27 ' with the ecliptic or XoY ° plane as shown in

Fig. i. The associated unit vectors are represented as i--G,_G' kG"

x, _, z. This is the orbital coordinate system with the x axis

passing through the satellite and the xy plane representing the instan-

taneous orbital plane. The orientation of this system relative to the
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Xl' YI' Zl system is specified by the three angles _, _ and e as shown

in Fig. 2. The angle _ is the angle between the xy (orbital) plane

and the xlY I (reference) plane. The angle _ is the regression angle

measured from the x I axis to the line of nodes, ON. Finally the angle

@ is the orbital angle measured from the line of nodes to the x axis.

The associated unit vectors are represented as i, j, k.

It should be noted that an additional relation between _, _ and

e is required to insure that the xy plane is indeed the instantaneous

orbital plane. This relation is determined in the derivation of the

equations of motion.

x , Ym' Zm" This is the lunar reference system in which the xm m

axis passes through the center of mass of the moon and the XmY m plane

represents the moon's orbital plane. The orientation of this system

relative to the Xo, Yo' Zo system is specified by the three angles am,

_m and em as shown in Fig. 3, where it is seen that these angles are

analogous to _, _ and e for the satellite orbital system. As before,

the associated unit vectors are represented as im," Jm' km.

The direction cosines relating these various systems are listed

in Appendix A.

Position Vectors

The relative positions of the sun, moon, earth and satellite can

be described vectorially as shown in Fig. 4, in which the various vec-

tors are defined as follows.
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The vector R is from the center of the sun to the center of mass

of the earth-moon system. In accordance with the assumed motion of this

system around the sun,

= R_ I = R(_ ° cos ® + _o sin ®) (i)

where R is constant and equal to the earth's orbital radius, while ®

varies linearly with time.

The vector PL is from the center of the earth to the center of the

moon and lies along the x axis. It can be expressed as
m

Po = Po im (2)

where Po is a constant and equal to the earth-moon separation.

The vector r is from the earth's center to the satellite along the

x axis and can be expressed as

-- -- (3)r = rl

where r is the magnitude of r and is one of the orbital variables to be

determined.

In addition to these basic vectors, it is convenient to define cer-

tain others that are of use in the formulation of the equations of

motion, although they can be expressed in terms of those already de-

fined. The vector PE from the earth's center to the center of mass

of the earth-moon system can be expressed as

1 -- (4)
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where

ME+ m
M

m

(s)

and _ and Mm are the masses of the earth and moon respectively.

The vector _ from the sun's center to the earth's center is

given by

i
(6)

The vector R
m

from the sun's center to the moon's center is given by

m = R + <i - i) _o (7)

The vector _S from the sun's center to the satellite is expressed as

rS = R - _ Po + r (8)

The vector r
m

from the moon's center to the satellite is given by

\r = r - (9)
m

Angular Velocity Vectors

The relative motion of the various coordinate systems defined pre-

viously can be expressed in terms of the following angular velocity

vectors.

The angular velocity, _, of the center of mass of the earth-moon

system around the sun can be expressed as
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= O ko (i0)

where _ is a constant equal to .0172 rad/solar day. This corresponds

to a period of one sidereal year.

The angular velocity, Wm, of the earth-moon system about its center

of mass and relative to inertial space is given by the expression

w = e k + (ii)
m m m

where e is the moon's orbital rate of .22998 rad/solar day correspondingm

to a period of one sidereal month, while _m is the regression rate of the

moon's orbital plane and has a value of -9.249 x 10 -4 rad/solar day,

corresponding to a period of 18.6 years.

The angular velocity eE of the earth about its axis is given by

eE = 8E_G (12)

where _ is equal to 6.3004 rad/solar day, corresponding to a period of

one sidereal day.

The orbital angular velocity, Wo, of the satellite around the earth's

center relative to inertial space is expressed in terms of the three or-

bital angles as follows

w° = _k I + _ (i I cos _ + 71 sin _) + ek (13)

where 4, _ and e are the orbital variables to be determined together

with r.
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FORMULATION OF THE EQUATIONS OF MOTION

The derivation of the equations of motion of the satellite relative

to the earth is presented in this section in abbreviated form; the de-

tails are given in Appendix B.

The equations of motion of the satellite, the earth and the moon

relative to inertial space can be expressed in vector form as follows

"" "" i "" "" F--Ss+_ms + F--Es

Satellite: rS = R - -- Po + r = (14)M
s

"" i "" F--SE+ _mE (15)

m m

•- I Fsm F mMoon: R = R + i - 0o (16)m M
m

In this derivation the dot notation for time derivatives signifies

a derivative relative to inertial space, while d/dr is a derivative re-

lative to the orbital (x, y, z) reference system. In addition, the sub-

scripts S, E, m and s refer to the sun, the earth, the moon and the

satellite, respectively. When they are used with M, the mass of the

body they represent is indicated. When they are used with a vector

force, F, the first subscript determines the attracting body, while the

second defines the body on which the force acts.
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The vector equation of motion of the satellite relative to the earth

is obtained as the difference between Eqs. (14) and (15) in the form

_ _s_+_m_+_ _s_+_
r = Ms _ (17)

An evaluation of the forces on the right reduces Eq. (17) to the follow-

ing form

[(r = - • kG) i r
r 2r r

÷ 6 <r \)_o
Po

(18)

where R is the earth's equatorial radius, G is the universal gravita-
O

tional constant and J2 is the coefficient of the oblateness term in the

earth's potential function.

The three component equations of motion corresponding to the x, y

and z axes are obtained from Eq. (18) in the form
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(r • i) =
r 2 2r4 "

r_2

m T)=]

(19)

"6

(r • 7) =
3J2EROGM- 2 __ -- --

4 (kG i) (kG
r

w

J)

3r_ 2

+---am - • ¥) (¥ • 7)(im m

+ 3r_2(rl • T) (r I • _) (20)

•. 3J2GME R2

(r • k) = 4 (kG i) (kG • k)
r

3r_ 2

+--_ _i-m• T__:im . __

+ 3r@2(_i T) (_i " _) (21)

The quantity r is given by the relation

dt 2 + x x
(22)
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from which the left sides of Eqs. (19), (20) and (21) can be expressed

as

"" d2r 2 --

dt 2

= - .r- ("\._)+r- T>- T>(r j) = 2 _ (w° • _) + r _--_ (Wo " (_o " (24)

•" -- dr -- "d_o -- --

(r • k) = - 2 _ (% 7) - r(-_ • T) + r(w o T) (_ - _) (25)

At this point, it is necessary to determine the constraint equation

which insures that the xy plane is the instantaneous orbital plane•

This condition requires that r as well as r must lie in the xy plane•

This can be satisfied if

(r • k) = 0 (26)

from which it follows that

and

(% •T> =o

• _)=o

(27)

(28)

Thus, Eqs. (23), (24) and (25) can be simplified to the form

-- -- d2r -- -- 2

(r i) = dt r(% • k) (29)
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(r • 7) = i d _r2(_o " _)]r dt (30)

where

(r • k) = r(_ ° i) (_o " k) (31)

(w° T) = _ sin @ sin _ + & cos @ (32)

(wo • 7) = _ cos @ sin _ - & sin @ (33)

(% cos (34)

The complete equations of motion of the satellite are obtained

by combining Eqs. (19)-(21), (27), (29) and (30)-(34) to give

d2r 2 GME

-- r(_ + _ cos _) = 2
dt2 r 2r 4

r_2

_ m _i 3 -- 7) 2](im •

-r_2_l- 3(r I • 7) 2] (35)

ir ddt _r2(_ + _ cos _)] -

3J2GMER2

r

3r_ 2

+ m -- T) -- _)(im • (im

m

J)

+ 3r_2(71 • 7) (71 • 7) (36)
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2

3J2GMER o

(8 + _ cos _)r 5 (kG
T) (k--G • [) cos 8

302

+ m (7 _) (i _) cos @

_(8 + _ cos _) m m

+ 302 (rI- 7) (rI- [) cos 8 (37)

(6 + cos

= 3J2G_ R2
- 5 (k--G _) (k--G _) sin 8

(6 + _ cos _)r sin

382

+ m (lL _) (iL • _) sin @

_(@ + _ COS Oe) sin

+ 3_2 -- _) -- _) sin _ (38)
(r I (r I

(@ + _ cos _) sin

These four equations constitute the desired orbital equations of motion

in terms of the variables r, e, _ and _.

MOTIONOF THE ORBITAL PLANE

The exact solution of the equations of motion as presented above

does not appear feasible since the terms resulting from earth oblate-

ness, the sun and the moon are rather involved functions of the unknowns

r, e, _ and _. To simplify the problem, it is assumed that the quan-

tities r, 8, _ and _ can be represented as follows by a steady-state

value plus a perturbation.
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r = r + 6r (39)
o

= 8 + 65 (40)
o

= _o + 6_ (41)

= ot + 6_ (42)
o

Since the forcing terms due to earth oblateness, the sun and the moon

in Eqs. (35) through (38) are in the nature of perturbations, it is

assumed that in these terms r, 8, _ and _ can be replaced by their

steady-state values, while 8 and _ are expressed as

8 = 8 t (43)
o

= _o t (44)

In addition, it is assumed that @ is much greater than _, and that

the nominal orbit is circular. Thus, the steady-state values of r and

are given by

r=r
o

(45)

o 3
r
o

(46).-

With these assumptions, Eqs. (37) and (38) can be written as
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3J2R_eo --

2 (kG
r
o

7) (k--G • _) cos e

382
m

o

(im i) (im • k) cos 0

+ 342 -- • T) -- • _) cos e
-- (r I (rI

e
o

(47)

3J 2R2 eo

2
r sin
o o

m

(kG T) (k--G • _) sin e

382

+ m (iL _) (_ • _) sin @m
_e sin c_

o o

+ 3_2 - _) - [) sin 8 (48)
sin c_ (rl (rl

o o

thus giving _ and _ as functions of time.

If the direction cosines tabulated in Appendix A are substituted

in Eqs. (47) and (48), they can be reduced to the form

127

I Ao sin w.t1 1

i=l

(49)

= Go+--
i

sin c_
o

127

B. cos w. t1 l

i=l

(5O)
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The details of this transformation are presented in Appendix C together

with a tabulation of the resulting expressions for the wl, A. and B.i i

values, as well as for
o

An examination of this tabulation shows that the w i values are

linear combinations of the frequencies eo' 8m' _' _m and _o" In the

case of A i and Bi, they may be functions of any or all of the quantities

do' _i' _m' 8o' ro' J2' _ and L" The presence of J2 in a given ampli-

tude indicates that this term is at least partially the result of earth

oblateness• Similarly, _ and 8 indicate contributions due to the sun
m

and the moon, respectively. Thus, it is seen that the steady-state re-

gression rate, _o' as well as the first seven oscillatory terms are the

result of a combination of all three perturbing influences. On the

other hand, those terms for which 8 _ i _ 22 are entirely due to solar

influence, while the rest of the terms (23 _ i _ 127) are due to the

moon.

The solutions for _ and _ can now be obtained by integrating Eqs.

(40) and (50) to give

O{ ,= (_
o

127
A.

+ _i [i - cos wit ]
i=l

(51)

127

1 _ Bi

L -- sin wit
sin d ° wi

i=l

(52)

= = and _ = O.under the assumption that at t O, _ d °

It is now necessary to define the angle _I between the reference

(XlYl) plane and the plane of the ecliptic since the quantities _o'
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Ai and B.l are all functions of _i" The selection of _i is dictated by

the fact that the analysis leading up to Eqs. (51) and (52) is based on

the assumption that the angle _ between the orbital (xy) plane and the

reference (XlYl) plane remains essentially constant and equal to _ .o

In view of this fact, a value of _I should be selected which mini-

mizes the amplitudes of the oscillatory terms in Eq. (51). Particular

emphasis should be placed on the low-frequency terms because of the

factor i/w i. An examination of the Ai expressions in Appendix C shows

that the only reasonable choice for _i is that value which makesAI,

the coefficient associated with the frequency, _o' identically zero,

as follows.

_2 2j_2R 2

E I +-'_m (2 -32_2 sin2 _m)] sin 2_ I _.2_2 O

o

sin 2(I - _i) = 0 (53)

which can be solved for _i in the form

tan 2_ I =

2J2 _2R2oo
s in 21

_2r2
o

_2
m 2

i +- (2 - 3 sin

2_O 2
_m) +

_2r2
o

cos 21

(54)

This selection of _i also makes the amplitudes A4, A6, B1 , B4 and B6

identically zero since they all have the left side of Eq. (53) as a

factor.

In addition, the amplitudes A2, A3, A7, B2, B3 and B 7 all involve

the factor f, given by
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f = _i+--

02

m (2 - 3 sin 2 _m) J sin 2 _i
2_ 2

2j_2R 2
zoo 2

+ _2r2 sin (_ - C_l)
o

(55)

While no choice of _i can make the factor f vanish, the value de-

termined by Eq. (54) does minimize f since

_2

df = _ m
1+--(2 2

- 3 sin 2 _m )_ sin 2 c_I

2J _02R2
z o o

_2r2
o

sin 2 (% - C_l) (56)

which is equal to zero from Eq. (53) .

By the same type of reasoning it can be shown that this choice of

_i maximizes the amplitudes A 5 and B5 associated with the frequency, 2_o.

However, this is a high-frequency term with a very small amplitude.

Thus, it causes very little change in the inclination angle, _.

With the determination of _I it is now possible to use Eqs. (51)

and (52) to describe the resulting motion of the orbital plane. In

Appendix D it is shown the remaining oscillatory terms result in less

.5°than a variation in the normal to the orbital plane. Thus, to a very

good approximation, the motion of the orbital plane is represented by
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= _ (57)
o

= jot (5s)

which means that the orbital plane maintains a constant inclination, o'

relative to the selected reference plane but regresses about the normal

to the reference plane at a steady rate of _o given
in Appendix C as

m __m (2 - 3 sin 2
3_ 2 cos c_° I + 2_2

_o - 8_ °
_m) ] (2 - 3 sin 2 _i)

2j^62R2zo o E2 _ 3 sin 2 (_ - _i)]I (59)
o

Thus, the motion of the orbital plane is completely described by

Eqs. (54), (57), (58)and (59).

In obtaining the above result, it was assumed in Eq. (44) that

could be replaced by _o t in Eqs. (37) and (38). However, an examination

of Eqs. (50) and (59) shows that as the orbital inclination, _ , approaches
o

90 °, the above assumption is no longer valid, since _o approaches zero

and Eq. (50) is dominated by the oscillatory terms.

In Appendix F, the behavior of these high-lnclination orbits is in-

vestigated in more detail. It is found that the representation of the

motion as described by Eqs. (57) through (59) is a good approximation of

the actual motion as long as the regression takes place about the z I

axis.
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III. RESULTS AND DISCUSSION

DETERMINATION OF ORBITAL REGRESSION

On the basis of the analysis presented in the previous section, it

is now possible to make a quantitative determination of the orbital re-

gression rate and its axis of rotation.

Reference Plane

An examination of Eq. (54) shows that the inclination, _i' of the

reference plane is a function of orbital radius. The relationship is

shown in Fig. 5, which gives _i as a function of r . It is seen that
O

for low-altitude orbits, for which the earth's oblateness is the dominant

perturbing influence, the reference plane is very nearly coincident

with the earth's equatorial plane (_I = 23o27')" This is due to the

fact that the equatorial plane is one of symmetry for the oblateness

effect. Similarly, for high-altitude orbits, for which the combi-

nation of the solar and lunar effects becomes dominant, the reference

plane approaches the plane of the ecliptic (_i = 0°)" Again, this is

due to the symmetry of these two effects relative to this plane.

Steady-State Motion

The stead_state regression of the orbital plane as specified by

Eqs. (57) and (58) is represented in Fig. 6, in which the normal to the

orbital plane (the z axis) maintains a fixed angle, _ , with respect to
O

the normal to the reference plane (the z I axis). At the same time, the

z axis rotates about z I at an angular rate _o' tracing a circular contour

on the spherical surface as shown. The residual oscillatory terms
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in Eqs. (51) and (52) cause small variations in this trace, but, as

shown in Appendix D, these residual oscillatory terms are negligible.

While the z axis maintains a fixed angle, _o' relative to the z 1

axis during its regression, it is seen from Fig. 6 that the angle _G

between the z axis and the earth's polar axis (the zG axis) varies be-

tween the limits

% = - I (60)
min

and

_G = _o + (_ - _i ) (61)
max

Thus, _G' which represents the inclination of the orbital plane to the

earth's equatorial plane, will vary slowly as a result of the regression

about the z axis.
i

The regression period, the time required for the z axis to make one

complete rotation about Zl, is given by the relation

2_

T R =_ (62)

By combining Eqs. (54), (59) and (62), T R can be determined as a functi_on

of the constant orbital inclination, do, relative to the reference plane

and the orbital radius r . This relationship is shown in Fig. 7 It
' O

is seen that in general the period increases as the orbital inclination

increases, becoming infinite for _ equal to 90 ° . The period also in-
o

creases with orbital radius, but appears to reach a maximum in the vicinity

of i0 earth radii. Presumably, this is due to the increase in the effect
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of the sun and moon and to the corresponding decrease in the effect of

earth oblateness at this altitude.

The numerical values of the regression period range from .099 year

for a surface orbit at zero inclination to 52.84 years for a similar

inclination at synchronous altitude. At a given altitude, the period

for an inclination, _o' is obtained by dividing the zero inclination

period by cos
O"

Special Cases

It is of interest to examine certain special cases of the expres-

sion for the orbital regression rate given by Eq. (59).

Earth Oblateness. If the oblateness of the earth is the only

perturbing influence, its effect is given by setting O and _ equal
m

to zero in Eqs. (54) and (59). Under these conditions, Eq. (54) gives

a value of _i equal to _. Thus, the reference plane is the earth's

equatorial plane, and the regression takes place about the earth's

polar axis. Under these same conditions, Eq. (59) reduces to

3J2R_ o

= (63)
o 2 cos _o

2r
O

which is the usual form for the regression due to oblateness. (See

Ref. 2.)

Sun and Moon. If the effect of the earth's oblateness is negligible,

as in the case of large orbital radii, J2 can be set equal to zero, with

the result teat the angle _i from Eq. (54) becomes zero. Thus, the refer-

ence plane becomes the plane of the ecliptic, and the resulting regression
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takes place about the normal to the ecliptic. The regression rate as

given by Eq. (59) reduces to

302 cos _ 3_2 (2 3 sin 2- Of ) COS Of

= _ o m m o (64)
o 4e 8_

O O

where the first term is the solar effect and the second is that due to

the moon. Numerical evaluation shows that the regression rate due to

the moon is approximately twice that due to the sun.

Lunar Resression. The expressions developed in the previous sec-

tion can also be used to determine the regression of the moon itself due

to the influences of the earth's oblateness and the sun's gravitational

attraction. As applied to the moon, Eq. (59) can be restated in the

following form:

30 2 cos _ J2_2R 2

m _i + m o (2 - 3 sin 2 _)] (65)
_m= - 4_ .2 2

m ® Po

where the first term in the bracket is due to the solar effect and the

second term is that resulting from the earth's oblateness. Actually,

the oblateness term is negligible, and Eq. (65) can be rewritten as

3_ 2 cos _ 3_2

_m = _ m- _ __
4_ 4_

m m

(66)

By means of this relation, the regression period of the moon is found

to be 17.9 years instead of the accepted 18.6 years. The reason for

this discrepancy is that Eq. (66) does not include the higher order
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terms which are necessary in calculating the orbital regression rate of

the moon. If these are included, Eq. (66) then has the form

and the regression period based on this relation is the accepted 18.6

years. The details of the derivation of Eq. (67) are given in Appendix E.

While Eq. (67) is necessary in explaining the behavior of the moon,

where the ratio O/_ is of the order of 1/13, the higher order terms are
m

negligible in the case of artificial satellites, for which this ratio

is of the order of 1/365 or less. Thus, Eq. (66) is adequate for the

purposes of this Report.

APPLICATION TO SYNCHRONOUS ORBITS

While the foregoing determination of orbital regression applies

for any orbital altitude, the discussion will now be limited to syn-

chronous altitude orbits.

Condition for Synchronism

From Eqs. (54) and (59), it is seen that for a synchronous alti-

tude orbit (r° 26195.2 mi) the inclination of the reference plane,

_i' is equal to 16°7 ', while the steady-state regression rate is given

by

_o = _(0) cos _o (68)
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where $(0) has a value of -3.257 × 10 -4 rad/solar day. In the case

of an unperturbed equatorial satellite, synchronism is achieved by set-

ting the orbital angular rate, e equal to the earth's spin rate relative
o'

to inertial space, 6E. Under these conditions the satellite remains

stationary above a fixed point on the equator. If this same unperturbed

satellite is placed in an orbit with an inclination _ relative to the
G

equatorial plane, it is obvious that the subsatellite point can no longer

remain fixed since it must vary in latitude between q_G and -_G during

each orbital period. However, if the orbital angular rate is again set

_E' the resulting ground trace of the subsatellite point is aequal to

fixed curve on the rotating earth. This curve is in the form of a figure

eight with its crossing point on the equator. Thus, although the satel-

lite itself is no longer stationary relative to the earth, it's ground

trace pattern is.

If perturbations are also considered with the resulting regression

of the orbital plane, it is necessary to modify the orbital angular rate

to compensate for this regression. The appropriate orbital angular rate

can be determined from Fig. 8. This figure shows the intersections with

the earth's surface of the reference, equatorial and orbital planes. It

is assumed that the orbital plane is initially in the position indicated

by the dotted line and that the initial subsatellite point coincides wit_

x I. At the end of a time t required for n crossings of the reference
n

plane, the subsatellite point is at Sn at an angular distance _n from

x I. In this same time the point A on the earth, which was the initial

subsatellite point, is displaced from x I by an angular distance _n" The

quantities tn, _n and _n can be expressed as follows
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2n_
t = -- (69)

n
o

(70)% = iotn

Sn = @E tn - 2n_ (71)

where $ is the orbital angular rate to be determined. If the orbital
o

is equal to _n' then the subsatelliteangular rate is adjusted so that 8n

point and A will be coincident whenever the orbital plane passes through

the x I axis (i.e., at intervals of half the regression period). The con-

dition that _n equals _n can be expressed by combining Eqs. (69) through

(71) to give

½ (72)

With this value of orbital angular rate the resulting ground trace is

again a figure eight. However, as will be seen, its size and its posi-

tion relative to the rotating earth are no longer constant. Although

neither the satellite nor its ground trace are stationary relative to

the earth, synchronism is maintained since the motion of the ground

trace pattern in longitude has no secular terms. Thus, Eq. (72) repre---

sents the condition for synchronism in this case.

From Eq. (72), it is seen that the desired synchronous orbital

angular rate depends on the orbital inclination through _o" However,

this variation in 8 corresponds to a change of the order of .2 mi
o

in orbital radius. This change in r ° is negligible insofar as the
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determination of either _i or _o is concerned.

Determination of the Ground Trace

The geometry for the determination of the satellite ground trace

is shown in Fig. 9, where the angle $ is the inertial longitude of the

satellite measured from the x I axis and ¥ is the satellite latitude.

The unit vector i along the satellite radius vector can be ex-

pressed relative to the XG, YG' ZG coordinate system in the form

- TG - _i = (cos V cos B) + (cos V sin $) JG + (sin Y) kG (73)

The same unit vector can be expressed relative to the Xl, YI' Zl system

as

7 7 7 + Cx_ I (74)i = axl I + bx] I

where a , b and c are given in Appendix A.
x x x

If Eq. (74) is projected into the XG, YG' ZG system it becomes

_ [b x _i )i = axl G + cos(k - + cx sin(k - C_l)] _ G

+ [- bx sin(k - _i) + cx cos(k - _i) ] % (7_)

By equating components of Eqs. (73) and (75), the following ex-

pressions for _ and y are obtained.

b cos(k - _i) + c sin(k
tan B = x x - _i) (76)

a
x
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sin V = - bx sin(k - _i) + Cx cos(h - _i) (77)

In Fig. i0 it is assumed that initially the orbital plane passes

through x I and the satellite is at x I. The figure then represents the

geometry at some later time, T, corresponding to some integral number

of equatorial crossings. S represents the satellite position and A

is the current position of the initial subsatellite point. The value

of @o can be expressed in terms of to by setting _ equal to zero and

replacing _ and e by _ and @ in Eq. (77). Solution of the resulting
O O

expression gives

sin 4o sin(k - _i)
tan e =

o sin _o cos(k - _i) - cos _o cos to sin(k _I) (78)

where

to = toT (79)

From Fig. i0, it is seen that the reference plane crossing im-

mediately prior to T occurs at time T - t , where
O

e
O

t = -- (80)

o
0 P"

and eo is given by Eq. (72)

If t is the time elapsed since this reference plane crossing,

then the general expression for _ in Fig. 9 is given by

_o o= (T - t + t) (81)
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The angle e in Fig. 9 can also be expressed as

0 = _ (T - t + t) - 2n_
O O

(82)

where n is the number of orbits completed at the time of reference

plane crossing. Since n is given by

n ---

_o(T - to)

24
(83)

Eq. (82) can be expressed as

= _ t (84)
O

If B 1 represents the current inertial longitude of the initial sub-

satellite point, A, it can be expressed as

_i = _E (T - to + t) 2n_ (85)

Elimination of _ and n between Eqs. (72), (83) and (85) gives
O

BI = _t + $o(T to) (86)

If Eqs. (72), (81), (84) and (86) are combined, the following value

for _i is obtained:

BI = e + _ (87)

The longitude of the satellite relative to the reference point A on the

rotating earth is given by
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AB = B - B1 (88)

while its latitude is equal to _. The relative longitude, AB, and the

latitude, ¥, can be computed as a function of t by means of Eqs. (76)-

(81), (84), (87) and (88).

For a given value of T, a determination of A_ and y versus t over

one orbital period determines the ground trace on the rotating earth.

By taking various values of T over one regression period, the effect

of the phase of the regression can be shown for various initial orbital

inclinations as follows.

Orbit in Reference Plane. In this case, the determination of A6

is zero and t is equaland _ can be simplified considerably since _o o

to T. Thus, Eqs. (76), (77), (87) and (88) become

tan B = cos(X - _i) tan _E t (89)

sin _: = sin(_ - _i) sin _E t (90)

61 = SEt (91)

A6 = 6 - 61 (92)

The resulting plot of y versus AB is shown in Fig. ii, where it is seen

that the maximum value of latitude is equal to X - _i or 17°20 ' , which

is the inclination of the orbital plane to the equatorial plane. Since

the time T does not appear in Eqs. (89) through (92), the ground trace

as shown will contine to repeat since this particular orbit remains fixed

in inertial space.
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Orbital Plane Normal to Reference Plane. In this case, the equa-

tions for the determination of A_ and y are simplified by setting
O

equal to 90 °. Under these conditions, the ground trace is determined

by the following relations:

_i) sin _E t + cos(h _i) sin 4o cos eE t
tan B = (93)

cos 4o cos _E t

sin(%

sin V = sin(X - _I ) sin 4o cos eE t + cos(X - _i) sin eE t (94)

BI = _E t eo + 4o (95)

tan e = sin _ tan(X - _i) (96)O O

&_ = _ _I (97)

As shown in Appendix F, _ may oscillate about a value of either 90 °
O

or 270 O, with an amplitude less than 90 ° and a period greater than

269 years.

By means of these equations, the ground traces shown in Fig. 12

have been computed for _ equal to 0 °, ±90 ° and 180 °. It is seen that
O

as l_ol increases from 0 ° to 180 ° the amplitude of the figure eight in-

creases from 90 - (_ - _i ), or 82o40 ' , to 90 + (_ - _l), or 102o40 ' . At

the same time the maximum latitude ranges from 82o40 ' at 14oI equal to 0 °,
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82040 ' north latitude

Fig .12-- Ground trace (orbital plane normal to reference plane, Cto=90 °)
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to 90 ° when !_oI equals 90 ° , and back to 82o40 ' for I_ol equal to 180 ° .

The longitude variations for !_o! < 90 ° are oscillatory in nature, but,

for 14oI > 90 ° , the longitude A_ increases monotonically. This is due

to the fact that the ground trace encircles the earth's axis in a

negative sense for these latter conditions.

It should be noted that only the ground trace for _ equal to 90 °
O

is actually fixed relative to the earth. Those corresponding to other

initial values of _ are subject to large amplitude oscillations in
O

longitude.

Orbit in Equatorial Plane. In this case the orbital plane is

initially in the earth's equatorial plane with _ set equal to _ - _i' O

which is equal to 7o20 ' . From Eq. (59), it can be shown that the or-

bital regression rate is equal to -3.231 × 10 -4 rad/solar day, which

corresponds to a regression period of 53.249 years. The ground trace

can now be determined by means of Eqs. (76) through (78). Since the

trace changes as the orbit regresses, the computation is made at five-

year intervals in T up to 25 years. The resulting patterns are presented

in Fig. 13, where it is seen that during the first half of the regression

period the ground trace grows from a single point to a figure-eight pat-

tern which attains its maximum size after half of one regression period.

At this time, the ground trace has dimensions of ±14o40 ' in latitude and'-

il ° in longitude. In addition to the variation in size of the earth trace,

its equatorial crossing moves relative to the origin, which is the initial

subsatellite point. During the first half of the regression period, the

equatorial crossing moves to the east, reaching a maximum displacement

of about .6 ° , which then decreases to zero after half the regression

period. The behavior of the ground trace during the second half of the
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regression period is the reverse of that just described in that the

pattern decreases in size and degenerates to a point at the end of one

regression period. Also, the equatorial crossing drifts toward the west,

reaching a maximum displacement of .6 ° and returning to 0 ° at the end

of the regression period. The behavior of the ground trace during the

second half of the regression cycle is a mirror image of that shown in

Fig. 13.

If the geometrical representation used in Fig. 6 is adapted to this

case, the relationship between the z, z I and z G axes and the trace of the

z axis on the reference sphere is shown in Fig. 14. Since _o and _ - _i

are equal, the earth's polar axis intersects the z axis trace. Also, the

arc of the great circle through z and z G is a measure of the instantaneous

inclination, _G' of the orbit relative to the earth's equatorial plane.

Thus, as the z axis moves around its trace, the value of _ varies from
G

0 ° at z G to a maximum of 2(4 - _i) or 14o40 ' at a point diametrically

opposite to z G. This instantaneous value of _G is equal to the maximum

latitude excursion of the ground traces of Fig. 13.

Orbit at an Arbitrary Inclination. As an example of the general

behavior of an inclined synchronous orbit, a value of 30 ° for _ is
O

selected. This inclination corresponds to a regression rate, _ , of
O

-2.821 × 10 -4 rad/solar day, which results in a regression period of p

60.98 years. The resulting earth traces at five-year intervals up to 30

years are shown in Fig. 15. It is seen that initially the characteristic

figure-eight pattern has an amplitude in latitude of _o - (h - _i ) or

22o40 ' During the first half of the regression period, this amplitude

increases to a maximum equal to _o + (h - _i) or 37o20 ' During this time



oO

°/

N

o_

I

0
4..-
_J

m

1J
o_

4...

O-

0
I-

U
c-

O

t-

O

I

&
,m
1.1_



i

©
-o

-o

°_
.4--

c_
.ml

Z
C)

\
°\_
,,\
c_

v

I.--

o
0
co

II

0

co

a

"-o

o
0

I
L¢')

&
,m

ii



50

the equatorial crossing point, which is initially at the origin, drifts

in an easterly direction, reaching a maximum of about 2°, after which the

drift reverses and the crossing point returns to 0° at the end of one-

half of the regression period. As in the previous case, the behavior of

the ground trace during the second half of the regression period is a

mirror image of that during the first half.

The relationship of the z, z I and zG axes is shown in Fig. 16 for

this case. It is seen that the instantaneous orbital inclination, _G'

relative to the equatorial plane lies between _ - (_ - _i) and
O

o + (_ _i), which are also the limits of the maximum daily latitude

excursions of the ground traces of Fig. 15. In general, this relation-

ship can be stated as

_ + (k - _i )I_o (X - _I )I _ _G _ do (98)

Size and Position of the Ground Trace

It is seen from the previous examples that the size and position

of the ground trace are functions of both the orbital inclination, _ ,
O

and the time. In order to describe these variations, it is convenient to

determine both the maximum latitude of the ground trace and the position

of the equatorial crossing as functions of _ and time.
O

Variation of Maximum Latitude. Since the maximum latitude during

a single traversal of the ground trace is equal to the inclination, _G'

of the orbit to the equatorial plane, this maximum latitude, _m' can be

expressed as

cos Vm = (_ - k--G) (99)
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which can be expressed from Appendix A as

= cos(_ - dl)cos _m cos d°

sin(k - _i) cos _ (i00)+ sin d°

where

= T (Ioi)

and _ is given by Eq. (59).
O

The dependence of y on T and ff is shown in Fig. 17, where T has
m o

been normalized by dividing by TR. It is seen that the maximum possible

variation of Ym for a given value of ff is 14o40 ' In addition forO _

those contours for d > 82o40 ' , the central portion corresponds to orbits
o

which encircle the earth's pole in a negative direction.

A further examination of Fig. 17 shows that, with the exception of

= k - dl, all of the d contours have a zero slope atthe contour for G ° o

T = 0. However, for do = _ - dl the slope is .8630 ° per year, which also
v

represents the initial rate of change of the orbital inclination relative

to the equatorial plane.

for _ equal to k - d 1Figure 18 shows both this variation of Ym o

and the equivalent curve from Fig. i0 in Ref. i. It is seen that the

present analysis gives a value of 53.249 years for the period of the lati-

tude variation and a maximum amplitude of 14o40 ', compared with the values

of 73.6 years and 20 ° obtained by the more approximate methods of Ref. i.
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Equatorial Crossing Position. The variation in the position of the

equatorial crossing point as a function of time and orbital inclination

can be determined as follows. At the time of equatorial crossing, the

inertial longitude of the satellite can be obtained from Eq. (76) in the

form

tan 8 °

cos e O sin 4o cos(_-_l) 1
= _ sin @o[Sin _o sin(k-_l) + cos (_o c°s(k-_l)C°S 40 ]

cos 0 cos _ - sin e cos _ sin
O O O O O

(102)

Elimination of @ between Eqs. (78) and (102) gives
O

tan 8 ° =

sin _o sin _o

cos G ° sin(k - _i) + sin _o cos(X _i )c°s _o
(103)

The longitude of the initial subsatellite point is given by Eq. (87)

as

Blo = eo + _o (104)

Thus, the longitude difference between the current equatorial crossing

and the initial subsatellite point is given by

&_o = 8o eo _o (i0_)

By means of Eqs. (79), (103) and (105), A8 ° can be computed as a function

of _ and the time T. The resulting relation is shown in Fig. 19, where
O

T has been normalized as in Fig. 17. It is seen that the resulting sur-

face is such that for a given value of _o the quantity _o- has a maximum

at approximately one-quarter of the regression period and a minimum at
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about three fourths of this period. The value of this maximum ranges

from zero at _o equal to 0 ° to approximately _ - _i at _o equal to

90 °. The exact expression for this maximum and its time of occurrence

can be found by differentiating Eq. (105) with respect to time and

equating to zero. This results in

I _ cos _ + cos ]i

o fk-_l_ J o (_-_i)

-i 8 sin -_- sin
= tan \2iT 2

_o [3 cos(k-_l) + 3 cos _ - cos _ cos imax o o (_-_i) -

and

(106)

T _

ma______xx= i -i F o ( -2 c_!)]
T R 2-_ cos L- tan T tan

(107)

It is seen from Eq. (107) that the maximum occurs very slightly past

one-quarter of the regression period. In a similar manner it can be

shown that the minimum of _o has a magnitude equal to the negative of

Eq. (106) and a time of occurence given by Eq. (107) as slightly before

three-quarters of the regression period. Contours for these maxima and

minima are shown in Fig. 19.

It should be noted that Fig. 19 applies only to regression about

the z I axis and that the effect would actually be superposed on the

shorter period oscillation due to equatorial ellipticity described in

Ref. i.

Period Between Equatorial Crossinss

The nodical period is defined as the time interval between crossings

of the reference plane at the ascending node and is given by
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2_ 2_

o 8o 8E - _o

(lO8)

However, the period between successive equatorial crossings is not

necessarily equal to T when orbital regression is present. The amount
o

of this deviation from T can be determined as follows• Figure 20 shows
o

the position of the orbital plane at the times of two successive crossings

of the equatorial plane• If these two crossing times are T and

T + To + AT, then the associated values of , are _o and _o + _o' and

those for 8 are 8o and 8o + A@o. The value of the increment A_o is given

by

: (T + AT) (109)o

On the other hand, since the angle 0 increases by approximately 2_ be-

tween two equatorial crossings, the angle be can be determined from the
• O

relation

+ A8 = e + + AT) - 2_ (ii0)8o o o 8o(_o

which together with Eq. (108) gives

ae : 6 aT (lll)
0 0 ...

At the time of the first equatorial crossing, T, the latitude is 0°.

Thus, substition of _ and 8 for _ and 8 in Eq. (77) gives
o o

-sin(l- _i) _cos @o sin %oi + sin @o cos 9o cos do]

sin _ cos(k - _i) = 0 (112)+ sin @o o
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Fig.20--Determinafion of period between equatorial crossings
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Similarly, at the time T + T + &T, of the next equatorial crossing,' o

' + &_o and e + &8the latitude is again 0° and the substitution of @o o o

for _ and @ in Eq. (77) gives a second relation of the form

sin(X - Crl) _cos(@ ° + heo) sin(4 ° + h4o)

+sin(@ O + 48o ) c°S(_o + A_o) cos CroJ

cos (k = 0+ sin(@ ° + A@o) sin _o - _i ) (113)

By expanding Eq. (113) for small values of A8 ° and &4o and subtracting

and is obtained
Eq. (I12), the following relation between A8 ° A4o

A@ [(sin @
o o sin @o - cos 8o cos @o cos _o ) sin(k - _i)

+ cos @o sin _o cos(k - _i) _

r ]cos 4o - sin @ sin 4o cos sin(k = 0 (114)+ A4oLC°S eo o % - _i )

Elimination of _8 ° and A_o between Eqs. (109), (iii) and (i14) gives the

following solution for AT.

• [ ]sin(k + sin G cos(l cos
AT = _oTo sin(k-Gl) - cos G ° -GI) o -GI) O

@o[ sin2 #O sin2 cos(X-GI)(k-Gl) + sin G °

- cos G ° sin(k-Gl) cos #o )2]

+ 4o sin(k-Gl) [cos G ° sin(k-_l) - sin Go c°s(k-Gl) cos #oJ

(it5)
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where 4o is given by Eq. (79).

Figure 21 shows the relationship between AT, d° and T specified by

Eq. (115). It is ssen that the period between equatorial crossings dif-

fers from T by only a few seconds for most values of _ and T. However,
o o

in the vicinity of the singularity at d ° = k - _i and T = 0, AT can be

appreciable since under these conditions the orbital plane and the equa-

torial plane are very nearly coplanar and the position of equatorial

crossing can shift very rapidly.

ORBITAL INCLINATION CONTROL

In the preceding discussion it has been shown that in the absence of

any control forces the characteristic figure-eight ground trace may have

long period variations in size and position due to orbital regression.

For many applications it may be desirable to limit these variations.

This is particularly true of the excursion in latitude where, for coverage

reasons, it may be necessary that the satellite latitude excursion be re-

stricted. This sort of control can be accomplished in two ways, the

most obvious being to apply control forces in such a way as to reduce

the orbital regression rate to zero, with the result that the orbital

plane remains fixed in inertial space and the ground trace remains fixed

in size and position on the earth. The other method of control is passive

and is achieved by injecting the satellite into orbit in such a way that

even in the presence of regression the period during which the latitude

remains less than a given value is maximized.
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Active Control

In connection with this method it is of interest to determine the

amount of propulsion required to reduce the regression rate to zero

thus fixing the ground trace relative to the earth.

If it is assumed that a control force F is applied in the z
cz

direction perpendicular to the orbital plane, Eq. (21) has an additive

term of the form F /M on its right side, and the resulting expression
cz s

for the regression rate corresponding to Eq. (48) becomes

3J2R28o

2
r sin
o o

(k-"G • i) (k--G • _) sin @

382

+ m -- _) -- " _) sin @
_@ sin c_ (im (ira

o o

3_ 2

+ (rI
sin

o o

T) (71 • _) sin

F sin @

+ cz (116)

M 8 sin
s o o

F
cz

The resulting steady-state regression in the presence of the force_

is given by

T

= I
_c _ dt

o

(117)

where T is a time large compared to any of the oscillatory periods

associated with _. Combination of Eqs. (116) and (117) gives
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T

+ i I" F sin @dt (118)*c cz
rM _ T sin _ o
O S O O

To reduce the steady-state regression rate, _ , to zero, it is necessary
c

that

T

ac Z

o

sin 0 dt = - ro0o_ ° sin _o (119)

where a is the control acceleration perpendicular to the orbital plane•
cz

From the form of Eq. (119), it is seen that accelerations applied

when 0 is 90 ° are more effective in controlling the regression rate.

Thus, it is assumed that the control consists of a single impulsive

force applied each time 0 is equal to 90 ° . Under these conditions the

left side of Eq. (119) represents the required velocity change per unit

time, &Vz/T , so that

&V

z " " (120)
-_-- = - roeo_ O sin d O

Combination of Eqs. (59) and (120) gives

AV 3r $2 sin 2c_ I(E _2
= o o i + m (2 3 sin 2 _m)] (2 - 3 sin 2 _i )

T 16 2_2

+
2j^e2R2_2r270 0 [2 - 3 sin2(X - _l)]l

o

(121)
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Thus, the propulsion requirement as specified by Eq. (121) depends only

on the inclination angle, _ , relative to the reference plane.
o

Since the orbital inclination angle, _G' relative to the equatorial

plane determines the maximum latitude excursion of the satellite, _G is

the parameter which would be specified. The geometrical relationship

between _G and _o is shown in Fig. 22, where it is seen that _o varies

depending on the position of the z axis on the constant _G contour.

However, _o ranges between extremal values of (_ - _i ) + _G and

(h - _i ) - _G" These values occur when _o is equal to 0° and 180 ° re-

spectively. Thus, the propulsion requirement is also bounded by the

expressions obtained by substituting the above extremal values for
O

in Eq. (121). The propulsion requirement can then be expressed as

AV

z=T Fo sin 2(_ - _i i _G ) (122)

where F is the amplitude of Eq. (121) and the use of the plus or minus
O

sign is determined by which of the two gives the smaller absolute value

for AV /T. The propulsion requirement as a function of _G is shown in
Z

Fig. 23, where the solid lines represent the minimum condition speci-

fied.

It is seen that for _G equal to zero (equatorial orbit) the propul--

sion requirement is 151.9 ft/sec/year, which is in good agreement with

the value of 150 ft/sec/year obtained in Ref. i. For _G equal to 7o20 ',

the orbit lies in the reference plane and remains there by definition.

Thus, there is no propulsion required for orbital control. As _G in-

creases, the propulsion requirement reaches a maximum of 580.4 ft/sec/year

when _G equals 45 ° . Although Fig. 23 indicates a zero value for the
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propulsion requirement when _G equals 82°40 ', this orientation is of

llttle interest since the orbit is in unstable equilibrium, as shown in

Appendix F. However, on the basis of Appendix F, there is a second

stable orbital orientation with the orbital plane perpendicular to the

direction of the vernal equinox. This orbit also has a zero propulsion

requirement.

Passive Control

In this method of ground trace control it is necessary to select an

[nltlal phase of the regression cycle such that the latitude excursion

is bounded for a maximum period of time. To accomplish this, use is

again made of the reference sphere as shown in Fig. 24, where the circle

about zG is a locus of constant _G and thus constant Ym as defined in

Eq. (I00). The circle about z I is the path of.the z axis as the orbit

regresses. If the z axis is initially at A, then the maximum latitude

excursion will remain less than its initial value, Ymo' during the time

it takes the z axis to regress from A to B. This time can be obtained

by solving Eq. (i00) for T to give

-i ['c°s sinYm°- c°s _ c°s(l - _i)I_ sin(k )T = 2 cos _i"
o

By differentiation of Eq. (123) it can be shown that for a given value

of Ymo the maximum value of T occurs when d° is given by

(123)

cos(_ - _i)
cos _ = (124)

o cos _mo
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• on GIn obtaining Eq (124) the dependence of _o o

less than X - G I are consideredonly values of G °

pression for the maximum value of T becomes

is neglected since

The resulting ex-

l[ 2sinimosini,oIT 2 cos

m _o sin(X - C_l)

(125)

In Fig. 25, T is plotted as a function of the maximum permissible lati-
m

equal to X - GI, T reaches a valuetude, _mo" It is seen that for G ° m

of 26.4 years.

For values of _mo greater than _ - G I, Tm is infinite since the

_m contour of Fig. 24 encloses the z I axis, which is one of the naturally

stable positions for the z axis.

Thus, for any given satellite application, if the specifications

of maximum permissible latitude variation and minimum acceptable life-

time are represented by a point to the left of the curve in Fig. 25,

then it is necessary to use an active control system with its associ-

ated propulsion requirements as shown in Fig. 23.
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IV. CONCLUSIONS

As a result of the analysis presented in this Report, the follow-

ing general conclusions can be stated regarding the effects of the sun,

the moon and the oblateness of the earth in perturbing satellites in

nominally circular orbits.

o For a given orbital radius, an orientation of the orbital

plane can be found which remains essentially constant relative

to inertial space under the influence of the assumed per-

turbing forces.

O The plane of the ecliptic, the earth's equatorial plane and

the constant reference plane defined above have a common line

of nodes, and the inclination of the reference plane relative

to the ecliptic is less than that of the equatorial plane,

the exact value being a function of orbital radius.

o If an orbit is inclined relative to its reference plane at

an angle less than 79° , its orbital plane will move in such

a manner that its inclination relative to the reference plane

remains essentially constant while its line of nodes in the

reference plane regresses at a steady-state angular rate pro-

portional to the cosine of the inclination angle.

o A highly elliptical type of regression can take place about

the direction of the vernal equinox if the inclination of the
orbit exceeds 79°.

O In addition to the steady-state motion, there are a large num-

ber of oscillatory terms in both inclination angle and re-

gression angle. These result in an oscillation in the direction

of the normal to the orbital plane of less than .5° relative

to its steady-state motion.

In addition to these general conclusions, which apply to orbits, of

any radius, certain others are reached which apply only to synchronous

altitude orbits regressing about the normal to the reference plane

O The reference plane for a synchronous altitude orbit has an

inclination of 16°7 ' relative to the ecliptic and -7o20 ' rela-

tive to the equatorial plane.

O The regression period of a synchronous orbit is 52.81 years at

an inclination of 0° and varies inversely as the cosine of the

inclination angle, _ , relative to the reference plane.
o
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The ground trace of an orbit lying in the reference plane is

a figure eight with crossing point on the equator and a maxi-

mum latitude excursion of 7o20 '. This trace is invariant in

size and location as a function of time.

O An orbit inclined to the reference plane has a ground trace

which is also a figure eight, but both its maximum latitude

excursion and its equatorial crossing point undergo oscillatory

variations with a period equal to the regression period.

O In the case of a synchronous orbit which is initially equatorial,

it is found that the ground trace develops from a point to a

figure eight with a latitude excursion of 14040' after 26.6 years

and then shrinks back to a point after another 26.6 years.

o To stop the orbital regression and thus fix the satellite ground

trace requires a fuel expenditure proportional to the sine of

twice the inclination angle relative to the reference plane.
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Appendix A

DIRECTION COSINES

The following tables present the direction cosines relating the

unit vectors of the various coordinate systems defined in the body of

the report.

REFERENCE COORDINATE SYSTEM

7
l
i

Jl

i J k
o o o

0

cos _i

- sin c_I

0

cos _i

EQUATORIAL COORDINATE SYSTEM

7

lG

"7

JG

"7

11

0

0

Jl

cos(k - _i)

- s in ()_ _i )

i

sin(_ _i )

cos(_ - _i)
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SATELLITE ORBITAL SYSTEM

l

7

-7"
l
i

a = cos _ cos _
x

a
Y

- sin @ cos _ sin

= - sin e cos

- cos @ cos _ sin

a = sin _ sin
z

-7

Jl

b
x

= cos _ sin

+ sin @ cos _ cos

b
Y

= - sin @ sin

+ cos e cos _ cos

b = - sin _ cos
z

c
x

c

Y

c
z

= sin e sin

= cos e sin

= cos

LUNAR ORBITAL SYSTEM

-7"
i
m

Jm

k
m

l
o

a = cos e cos
xm m m

- sin em cos _m sin _m

a = - sin 6 cos
ym m m

- cos e cos _ sin
m m m

a = sin _ sin
zm m m

7

Jo

b = cos e sin
xm m m

+ sin em cos _m cos _m

b = - sin @ sin .*mym m

+ cos % cos _m cos %m

b = - sin _ cos
zm m m

c
xm

c

ym

C
zm

o

= sin @ sin
m m

= cos e sin
m m

= COS
m
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Appendix B

EQUATIONS OF MOTION

In the body of this Report, the equations of motion of the satellite,

the earth and the moon relative to inertial space are given in Eqs. (14),

(15) and (16) in the form

m

F
"" _Ss ms FEs

Satellite: rs - M + _--- + _--- (B-l)
S S S

Earth: •- FSE + FmE
(B-2)

m m

•_" FSm FEm
Moon:

R = -- + (B-3)
m M M

m m

The vector equation of motion of the satellite relative to the earth is

obtained as the difference between Eqs. (B-I) and (B-2) as given in

Eq. (17) and below

•. FSs + F + + FmEms FEs FSE
r = (B-4)

M MES

Similarly, the vector equation of motion of the moon relative to the ea_-th

is given by the difference between Eqs. (B-2) and (B-3) as

"" F--Sm + F--Em F--SE + F-mE
P = (B-5)
o M N Em

Finally, the vector equation of motion of the center of mass of the earth-

moon system relative to inertial space is obtained as follows. The
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position of the center of mass is located by the vector R, which is de-

fined by the relation

(B-6)

Elimination of RE and Rmbetween Eqs. (B-2), (B-3) and (B-6) gives the

desired equation for center of mass motion as

"--" F--SE + F--Sm + F--Em + _mE

R = M E + Mm (B-7)

GRAVITATIONAL ATTRACTIONS

The various gravitational forces involved in the foregoing equa-

tions are evaluated as follows.

Force of the Sun on the Satellite

m

The force FSs can be expressed as

GMsM s _

_Ss = 3 rs

r S

(B-8)

where

rs _ Po= - --+ r (B-_)

The magnitude of r S is then given to first order as

2 = R 2
rS + 2(r • R) 2(_ _) (B-IO)
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from which the inverse cube term can be expressed by a binomial ex-

pansion as

m

- =R3 "i
rS

(B-II)

Substitution of Eqs. (B-9) and (B-II) in Eq. (B-8) gives

GMsMs _ Po -- 3- - -- + r - -- (r R) RF-Ss 3 _ _ 2
R R

R

(B-12)

neglecting terms of the order of r2/R 2.

Force of the Moon on the Satellite

The force F is given by
ms

GMM

F - m s
ms 3

r
m

(B-13)

where

rm = - Po +r (B- 14"_

From these relations the first-order expansion for F
ms

the same manner as above in the form

is obtained in

m

E 3 0o•= ms -- +r 7
ms T - Po 2 o

0o Po

(B-14)
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2 2
neglecting terms of the order of r /Po"

Force of the Earth on the Satellite

The gravitational potential of the earth at a given point can be

expressed in terms of the radial distance r from the earth's center and

the distance zG from the equatorial plane as follows

where G is the universal gravitational constant, J2 is the coefficient

due to earth oblateness (J2 = 1.08219 x 10 -3 ) and Ro is the mean radius

of the earth. The force components in the r and z directions are found

by differentiation to be

and

_U
F = --
r _r

r 2 2r r

_U
F -- --

z %z G

3GMEMsJ2 R2

5
r

Z
G

(B-16)

P

(B-17)

Since

zG = (r k--G) (B-18)
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the force exerted by the earth on the satellite can be expressed in

vector form by combining Eqs. (B-16) through (B-18) to give

r L 2r2 r

3J2R 2 (r • k--G)
r

(B-19)

Force of the Sun on the Earth

The force FSE can be expressed as

_ GMsM E _

FSE - 3 RE

RE
(B-20)

where

7
-- O

RE= (B-21)

Again, by a binomial expansion, FSE becomes

-- GMsM E Po=
FSE R 3 # #R

2 2
neglecting terms of the order of po/#R .

(B-22)

Force of the Moon on the Earth

In this case the force _ _ is given by

F E GMmME --= 3 PO,

Po

(B -23)
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Force of the Sun on the Moon

m

The force FSm is given by the relation

GMsM m _

FSm 3 Rm
R
m

(B-24)

where

m =_+ <i _)_o (B-25)

These two relations can be expanded as before to give

_ GMsM m

FSm - R3

_ -- _ \0 o
R

2 2

neglecting terms of the order of Po/R .

(B-26)

Force of the Earth on the Moon

In this case the force FEm is given by the relation

._ G_M m _

FEm = 3 Po (B-27)

Po

MOTION OF THE MOON

Substitution for the forces on the right side of Eq. (B-5) gives

the following equation for the motion of the moon relative to the earth:
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.. G(ME+ Mm)_
Po 3 Po

Po

GM
F- 3 .-1

_ __s • R) R_
R 3 L°° - R--_ (7o

(B-28)

which can be simplified to

•. G(ME + Mm) _

Po = - 3 0o (B-29)

_o

since the second term in Eq. (B-28) is less than one percent of the first

term.

Since it has been assumed that the moon rotates at a fixed angular

rate and at a constant distance from the earth, its acceleration is given

by

Po - 0 Po (B-30)

which together with Eq. (B-29) gives

where

_2 GM
m m

3
Po

ME +M m
=

M
m

(B-31)

(B-32)

MOTION OF THE EARTH-MOON SYSTEM

In a similar manner, the forces in Eq. (B-7) can be eliminated to

give
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•. GM S _

R = - --_ R (B-33)
R

as the equation of motion for the center of mass of the earth-moon system.

Since this motion is also assumed to have a uniform angular rate, @, and

a fixed value of R, the acceleration is given by

R = _2_ (B-34)

which combined with Eq. (B-33) gives the following for the earth's or-

bital angular rate

_2 = GMs

R3 (B-35)

MOTION OF THE SATELLITE

Vector Equation of Motion

Substitution of the appropriate force expressions in Eq. (B'4) and

elimination of the quantities GM S and GMm by mean of Eqs. (B-31) and

(B-35) give the following vector equation of motion for the satellite:

r = ---_ 1
r

3_2_o_ ])2r 2 _r_ (r • kG )2 - i r

r2 (7" • gG)

8
_2

F - _o]__ ___ (7 po)2
Po

(B-36)
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which corresponds to Eq. (18).

Substitution of ri, Rr I and Poim for r, R and 0o respectively in

Eq. (B-36) gives

r =

3J2 R2

_r_ [_C"_)_- 1])T

3J2R _

+--2-- (7
r

m m m -7

- r@2f7 - 3(i
L " rl) rlj

r62

-m[T-3(T -- Tj" im)
(B-37)

The left side of Eq. (B-37) can also be expressed in the form

m

.,-<\x
dt 2 i

[_o - _]+ x [w x
o

(B-38)

where the derivatives on the right are relative to the x, y, z coordinate

I

system, and w
o

inertial space.

is the angular velocity of the x, y, z system relative to

m

Substitution of ri for r in Eq. (B-38) gives

"--" d2r- dr F-- fd_

r =--i + 2 d---_"L C0o x "['] + rLd----_" x _]
dt 2

+ rL_(_o i) w° (_o _) T] (B-39)
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Component Equation of Motion

If the i, j and _ components of Eqs. (37) and (39) are equated,

the following equations of motion are obtained

dt 2 o r 2

2r4

- 1

r6 2

_m_ I 3(i L T) 2] (B-40)

.d_
j)=

3 J2RoGM_ 2 -- -- __

4 (kG i) (kG
r

T)

m

+ 3r@2(rl T) (r I j)

3r@ 2

+ m _ • T) - T)
(Im (im (B-41)
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dr E w

- 2_ (W° j)

,d'_°
_)=

3GMEJ2 R2

r

+ 3rQ2(71 T) (_i _)

3r$ 2

---em (T 7) - _)
+ _ m (im

(B-42)

These three equations can be further simplified to

d2r

dt
2

r

2r4

.2

r 6m _ ]- -- I_i - 3 T) 2
L (im

(B-43)
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1 d --

i) (% j)=

3G_J2R _

4
r

(kG J)

+ 3r_2(71 7) (71 J)

3r_ 2

m -r .7) --
(zm (im

7) (B-44)

i d [ r2- ] --r dt (Wo " j) + r(Wo T)(\ _)=

3G_J2 R2 _

4 (kG
r

7) (kG _)

+ 3r_2 (rl 7) (rI • _)

3r_ 2 --

+ m_ (Zm _) (im- _) (B-45)

Constraint Equation

In order that the xy plane always be the instantaneous orbit plane,

it is necessary that the vectors r and r both lie in this plane. The

vector r satisfies this condition since it is along the x axis by
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definition. In the case of r the following relation must be satisfied

(r _) = 0 (B-46)

which states that r is perpendicular to the z axis and thus lies in the

xy plane as desired.

Equation (B-46) can be simplified by combining it with the expression

m

"-- dr + [_o X r]r = dt (B-47)

which gives

m

(E\x (B -48)

l m

Substitution of ri for r reduces Eq. (B-48) to

dtdr(._ . _) + r(wL E7 x _]) - o (B-49)

or

(% • 7) _0 (B-50)

Complete Equations of Motion

By means of Eq. (B-50), the three equations, Eqs. (B-43), (B-44)

and (B-45), can be simplified to
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d2r r(_o _) 2 _ G_
dt 2 r 2

T) 2]

r_2[l 3(rl _)2]

r_2
m [i 3- T) 2- --_-- - (im (B-51)

d [r 2 (_
dt o

3GMEJ2 R2

[) ] = 3 (k--G 7) (k--G
r

m

J)

+ 3r242 (r I i) (rl

m

J)

3r2_ 2
m -- -- --

(im • i) (im

n

J) (B-52)

m

(% _)=
3G_J2 R2 _

(kG _)

m

+ 3G 2 (rI 7) (r I _)

3_ 2
m --

+ --_-- (im • T) (im
_) (B-53)
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The three angular velocity components can be expressed by means

of Eq. (13) so that

m

(00O _) = _ sin e sin _ + _ cos e (B-54)

w

(_o T) = _ cos O sin _ - _ sin e (B-55)

(% _)--_ + _ cos (B-56)

Substitution of Eqs. (B-54) through (B-56) into Eqs. (B-50) through

(B-53) gives
2

d r

dt 2

G_
r(_ + _ cos _)2 _ 2

r

3G_J2 R2

FI - 3(k G
2r 4

7) 2]

- r_2[l 3(71 7) 2]

rOE
_ m (i 3 -- 7) 2

(im ]
(B-57)

d [r 2(_ + _ cos _)] =
dt

3G_J R 22 o --

3 (kG
r

m

J)

+ 3r2_2(71 7) (_i

D

J)

3r2_ 2

(i m • i) (i m

m

+ -- j) (B-58)
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5
r (_ + _ cos _) sin

+
382(71 T) (71 _) sin

(e + _ cos _) sin

sin @3e (L T) (";'lm _)

+ (B-59)

b(@ + } cos _) sin

r5(@ + _ cos cO

+

m m

302(ri T) (r I • k) cos

(_ + _ cos _)

_7 m cos 93 ( T) (im7 i)
+ (B-60)

_(6+_ cos _)

These four equations represent the desired equations of motion, and

the scalar products of the unit vectors can be evaluated by means of the

direction cosines given in Appendix A.
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Appendix C

OSCILLATORY AMPLITUDES

INTRODUCTION

In the main part of this Report, expressions are derived for _,

the rate of change of orbital inclination, and _, the orbital regression

rate, in the form

3G_J2R__k--_T) (k--G • _) sin 0

5(r 0 + _ cos _) sin

+

m

T) (r I • _) sin 0

(0 + _ cos _) sin

3_(L _) (iL " _') sin 0

+ (C-l)
D(e + @ COS _) sin

__o_.-_ .T_<.-__co_
r 5(0 + _ cos _)

+
3Q2(rl _) (r I _) cos e

($ + _ cos _)

_m_\ T)_m • _)_o_
+ (c-2)

.(6+_ cos oO

corresponding to Eqs. (37) and (38). It is also indicated in Eqs. (49)

and (50) that these expressions can be represented as
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and

127

= _ + i _, B cos w.t (C-3)
o sin c_ i l

o
i=l

127

= _' A. sin _.t (C-4)
/. i i

i=l

In this appendix the method of determining the quantities _o' Ai

B. and w. is indicated and the resulting expressions are tabulated.
l 1

METHOD OF COMPUTATION

If the scalar products on the right sides of Eqs. (C-I) and (C-2) are

evaluated by means of the direction cosines in Appendix A, the resulting

expressions can be expanded as a constant plus a summation of cosine terms

in the case of Eq. (C-l) and as a summation of sine terms in Eq. (C-2).

The arguments of these sine and cosine terms are in the form of

linear combinations of the angles @, ®, 0m' _m and _, while their ampli-

tudes are functions of the angles _, _m and _i as well as the coefficients

of the terms in Eqs. (C-l) and (C-2). If it is assumed that the oscillatory

variations of _ are small compared to its steady-state value, _o' then

the angle _ on the right sides of Eqs. (C-l) and (C-2) can be replaced-

by _ t. Similarly, if it is assumed that the oscillatory variations of
o

are small, then _ can be replaced by its steady-state value,
o"

Finally, it is assumed that _ is small compared to _ so that the

term _ + _ cos _ can be replaced by @ • Since the solution of Eqs. (C-l)
o

and (C-2) for _ and _ depends upon these assumptions, it is essential

that the resulting solutions verify the assumptions; if this were not
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the case, the method would be invalid. This aspect of the problem is

investigated in Appendix D.

If, in addition, the following substitutions are made

e=et
O

® = _t

(c-5)

then Eqs. (C-l) and (C-2) take on the form indicated in Eqs. (C-3) and

(C-4), where the w. values are linear combinations of the angular rates e ,
l O

_' 0m' _m and _o' and the quantities _o' A. and B° are functions ofl I O'

m and _i"

The right sides of Eqs. (C-l) and (C-2) each consist of three terms

arising from the effects of earth oblateness, the sun and the moon.

Thus, in the determination of _ as well as A. and B., the presence of
O l i

J2 indicates an oblateness effect, while _ and _ indicate solar and
m

lunar effects respectiveiy. Actually, as wiIi be seen, _o and some

of the A.'s and B.'s have contributions from aii three.
1 1

ANALYTICAL EXPRESSIONS

Since the details of the actual analysis are rather lengthy, only

the resulting amplitudes and frequencies are given here. In presenting

these expressions it is convenient to make the following definitions:
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K =

GMEJ2R _

_2r5
o

(C-6)

I[_39--2 i + m (2 -

p = 8_ ° 2_Q 2
3 sin 2 _m) ] (2 - 3 sin 2 _i)

+ 2K [2 - 3 sin2(_ - _i)] I

8e o

1 +--

_2

m (2 - 3 sin 2 ]
2_2 _m ) sin 2 c_I

+ 2K sin2(h - _i)I

i
: fl+ m

8_ ° L 2.,u,@2
(2 - 3 sin 2 ]_m) sin 2 _i

- 2K sin 2(X - @i) I

(C-7)

(c-8)

(C -9)

Steady-State Resression Rate

The summation of the constant terms in Eq. (C-I) gives

= P cos
o o

(C-lO)

, is negative for direct orbitsand since P is inherently positive _o

(l°t o I < 90°) •
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Oscillatory Amplitudes and Frequencies

Combination Terms. Those oscillations resulting from all three

of the perturbing influences have the following amplitudes and fre-

quencies.

Wl = _o

A I = S cos _o B I = - S cos 2_ °

0o2 = 24o

A 2 = Q sin _o B 2 = A 2 cos _o

0o3 = 2e ° - 2_o

2 do

A 3 = - Q sin -_- sin d ° B3 = _ A 3

w4 = 28o - _o

A 4 S sin 2 d°= --_ (i + 2 cos do) B4 = A4

_5 = 280

A5 cos= - P sin d° o B 5 = _ A5

=_o6 2 O° o

2 °Zo
A 6 = S cos _ (i - 2 cos O<o)

= + 2{ o_7 200

2 _o
A 7 = Q cos -_- sin d °

B 6 = _ A 6

B 7 - A 7

Solar Terms. Those terms arising from the solar effect only are

as follows, where N represents _2/_
O
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0o8 = 2_- 2_o

3 4 °_i

A 8 = - _ N cos -_ sin _o

3 4 °ll

B 8 = _ N cos -_- sin 2c_°

009 = 2G - _ o

3 2 C_l

A 9 = - _ N cos _- sin c_I cos _o

3 2 _I

B 9 = _ N cos --_sin _i cos 2_ °

_i0 = 2G

AI0 =

BI0 =

0

9 2

- i-_ N sin _i sin 2_ °

Wl I = 2_+_o

3 2 _I

All = - _ N sin -_ sin c_I cos _o

3 2 _i

BII = - _ N sin _- sin _i cos 2_ °

w12 = 20 + 2_o

AI2= 3 N sin 4 c_lT sin _o

3 4 _i

BI2 = _ N sin -_- sin 2c_°

0013 = 2@ - 2_ - 2_oO

3 4 °tl 2 C_o

AI3 = - _ N sin _- sin -_- sin _o

BI3 = - AI3
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AI4 = _ N sin _- sin c¢i(i + cos

BI4 = _ AI4

_o

2_o) sin 2 --_

-- 26
Wl 5 2 _o

9 2
AI5 - 32 N sin _i sin 2c_°

BI5 = _ AI5

= 2_+_o°°16 2_ o

3
AI6 = - _ N cos

BI6 = _ AI6

2 °tl 2 C_o

_- sin _i(i - 2 cos _o) cos _-

w17
- 2@+ "

= 20 ° 2_ o

3 4 C_l 2 _o

AI7 = _ N cos _- cos -_ sin _o

BI7 = _ AI7

= +_i 8 2 0o

3
AI8 - 4

2_ o

4 _i C_o
- - -- N cos -_ sin 2 _- sin _o

BIB = _ AI8

w19 = + 2_ _o20o

3 2 °tl

AI9 = - _ N cos -_ sin _i(i + 2 cos

BI9 = _ AI9

w20 = 250 + 2_

A20 t - 3_ N sin 2

B20 = _ A20

_i sin 2_ °
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= + 20+ _o0_21 2_o

3 2 _i 2 _o
A21 = _ N sin -_- sin _i(i - 2 cos _o) cos _-

B21 = A21

= + 2_+ 2_ow22 2_o

3 4 _i 2 _o
A22 = _ N sin -_ cos _- sin dO

B22 = _ A22

Lunar Terms. Those terms resulting entirely from the lunar effect

are as follows, where M represents _2/_ :
m o

w23 = _m - 2_o

3

A23 = 3--_M sin 2_m sin 2c_I sin c_°

3

B23 = - 3-_ M sin 2_ sin _I sin 2_m o

W24 = _m - _o

3

A24 = - i-_ M sin 2c_F(COSm__ _i + cos 2_i). cos oLo

- sin _i sin _o]

3

B24 = i-_ M sin 2_m(COS _i + cos 2_i) cos 2c_°

A25 = 0

B25 =
9

- 3-_ M sin 2c_-m sin 2_ I sin 2_ °
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w26= _m+ _o

3
A26 = - I-_M sin 2_m[(COS_I - cos 2_i) cos _o

- sin olI sin _o]

3
B26- 16 M sin 2_m(COS_i cos 2_i) cos 2_°

0027= _m+ 2_o

3
A27 - 32 M sin 2_m sin 2_I sin _o

3
B27 = 3-_M sin 2_msin _I sin 2_O

w28 = 2_m - 2_o

_ 3 2 4 _i
A28 - - _ M sin _mcos _- sin _o

3 2 4.._inB28 = I-_M sin _ cos 2_m o

w29 = 2_m-_io

3 2 2 _i
A29 = - _ M sin _mcos -_ sin _I cos _o

2 _i
B29 = 8 M sin 2 _ cos sin _i cos 2_m _- o

w30 = 2_m

A30 = 0

9 2
B30 = - 3-_M sin

2
_m sin _i sin 2_o

w31 = 2_m+ _o

3 2
A31 = - --8M sin

3 2
B31 = - _ M sin

2 _i
_m sin _- sin _i cos _o

2 _i
_m sin _- sin _i cos 2_o
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w32 = 2_m + 2_o

3 2 4 _i

A32 = --8 M sin _ sin -_ sinm o

3 2 4 _i

B32 = I-_M sin _rn sin -_-sin 2_ °

_33 = 2_m 2_m - 2_o

3 4 c_ _im 4

A33 = - _ M sin -_- sin -_ sin _o

3 _m . 4_i
B33 = 8 M sin 4 _-sln _-- sin 2_ °

w34 = 2era - 2_m _o

3 4 _m 2 °tl

A34 = _ M sin -_ sin --_ sin _i cos _o

3 4 _m 2 _i

B34 = _ M sin --_ sin -_ sin _i cos 2_ °

w35 = 2_m - 2#m

A35 = 0

9
B35 = 16 M sin 4 _ sin 2 _i sin 2_ °

m36 = 2_m - 2_m + _o

=3 _m 2 _I
A36 4 M sin 4 _- cos -_- sin _i cos _o

3 _m 2 _i
B36 = 4 M sin 4 -_ cos _-sin _i cos 2_ °

w37 = 2_m - 2_m + 2&o

3 _ _Im 4
A37 = [ M sin 4 _- cos _- sin _o

3 4 4
B37 = _ M sin -_ cos -_ sin 2_ °
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°°38 = 2_m- _m - 2_o

3 2 _m

A38 = i--_M sin --_ sin _m sin 2011 sin _o

3 2 c_m

B38 = i-_ M sin --_ sin _ sin c_I sin 2_m o

w39 = 2_m - _m - _o

3 2 _m

A39 = _ M sin -_ sin _m[(COS _i - cos 2c_i) cos _o

- sin _i sin _o]

3 2 _m

B39 = - _ M sin T sin c_ (cos _I - cos 2_i) co_. 2cym o

0340 = 2_m- _m

A40 = 0

_ 9 m

B40 16 M sin 2 -_ sin _m sin 2c_I sin 2_ °

w41 : 20m _m + _o

3 2 _m

A41 = _ M sin --_ sin _m[COS c_I + cos 2c_I) cos _o

- sin c_I sin C_o]

3 2 c_

=- m (cos _i + cos 2c_I) cos 2c_B41 8 M sin -_ sin _m o

_°42 = 2_m - _m + 2_o

3 sin 2 _= _ __ m
A42 16 M -_- sin _m sin 2_ I sin _o

3 2 _m

B42 - 16 M sin -_ sin _m sin @i sin 2_ °

w43 = 20 m - 2_ o

3 c_I sin _oA43 = - 3-_ M sin 2 _m sin2

3 2 2

B.._+o= 6_ M sin _m sin @i sin 2c¢°
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w44 = 20m - $o

9 2
A44 = 3--_M sin _m sin 2_ I cos _o

9 2
B-- - M sin
44 3 2 _m sin 2_ I cos 2_o

_45 = 28m

A45 = 0

9 2

B45 - 32 M sin

2
ot (2 - 3 sin
--In" _i) sin 2_ °

w46 = 20 +m o

9 2

A46 = - 3--_M sin

9 2
B46 = - 3--2M sin

sin 2c¢I cosm o

_m sin 2_ I cos 2_o

_47 = 20m + 2_o

3 2 2

A47 = zJ_--2M sin _ sin _"i sinm o

3 2 2

B'74 = 6-'$M sin _m sin c_I sin 2¢y°

0048 = 28m + _m - 2_o

3 2 _m

A48 - 16 M cos _- sin _m sin 2_ I sin _o

3 2 ot_ m
B48 - i-_ M cos _- s'in _m sin _i sin 2_ °

0u49 = 2% + _m - _o

3 2 ff
Ill

A49 = _ M cos _-- sin m [(cos _i + cos 2_i) cos _o

- sin _i sin _o]

3 2 _m

B49 = - _ M cos --_ sin _m(COS _i + cos 2_i) cos 2_ °
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A50 = 0

9 2 _m
B50 = i--_M cos _- sin _ sin 2_I sin 2_m o

_51 = 2em+ _m+ _o

3 2 _m
A51 = _ M cos -7 sin _ _(cos _i - cos 2_i) cosm- o

- sin O_I sin _o]

3
B51 = _ M cos

2%
_'- sin _m(COS _i - cos 2_i) cos 2_ °

W52 = 2_m + _m + 2_o

3 2_m
A52 = i-_ M cos -_- sin c_ sin 2_ 1 sin c_m o

3 2 _m

B52 - 16 M cos -_ sin _m sin c_I sin 2_ °

w53 2e + " - "= m 2_m 2_o

3 4 _m 4 _i

A53 = - _ M cos _- cos _- sin _o

3 4 _ _im 4
B53 = _ M cos --_ cos -_ sin 2_ °

w54 = 2_m + 2_m - _o

3 4 _m 2 C_l

A54 = - _ M cos _cos 7- sin _i cos c_°

3 4 _m 2 °!l

B54 = _ M cos -_ cos _- sin _i cos 2_ °

w55 = 2e + 2_mm

A55 = 0

9 4 _m . 2

B55 = _ --16 M cos _--sln o_I sin 2_ °
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0056= 2_ + • + •m 2*m _o

3 4 _m 2 °tl
A56 = - _ M cos -_ sin -_ sin _i cos _o

3 4 _m 2 _i
B56 = - _ M cos _- sin _- sin _i cos 2_°

w57 = 2e + 2_m+ 2_Om
3 4 _ °tlm 4

A57 = _ M cos _- sin -_ sin _o

3 4 _ °Llm 4
B57 = _ M cos -_- sin _- sin 2_°

w58 = 2_O 2em - 2_m- 2_o

3 4 _ _i otm 4 2 o
A58 = - _ M cos -_ sin -_- sin -_- sin _o

B58 = _ A58

=W59 2e o 2_m -

3 40l _im 2
A59 = _ M cos -_ sin _- sin _l(COS _o

B59 = _ A59

- cos 2_ )
o

oo60 = 2_° 2_m - 2_m

of
9 4 m 2

A60 = - 3-_ M cos --_ sin

B60 = _ A60

_i sin 2_°

w61 = - 2_ - 2_m + _o2 _o m

3 4 _m

A61 = _8 M cos _- cos

2 °tl

_- sin _l(COS _o + cos 2_ )
o

B61 = _ A61



107

_62 = 2_ O - 2_ m - 2_ m + 2_ O

Ol Of
3 4 m 4 i 2

A62 = _ M cos -7 cos -_- cos

B62 = A62

ol
o

-_ sin _o

= - 20" - _m 2_o_6 3 2 _o m

3 2 m

A63 = - I-_M cos _- sin m

B63 - A63

sin _l(COS _i + cos _ ) sino o

= - 2e -_i -
W64 2 _o m m o

3 2 m

A64 = - i-_ M cos _- sin _ [(cos _i - cos 2_i) (cosm o

- sin _i sin _o ]

B64 = _ A64

cos 2_ )
o

= -2e -_
_65 2 _o m m

Ol
_ 9 2 m

A65 - 3-_ M cos _- sin _ sin 2_ I sin 2_m o

B65 = A65

= - 2e _m+ $o_66 2 _o m

Of
3 2 m

A66 = - _ M cos _- sin _m[(COS c_I + cos 2c_i) (cos _o

- sin _i sin _o]

B66 = _ A66

+ cos 2_ )
o

°°6 7 = 2_ 2".@ - _m + "o m 2_0

Of
3 2 m

A67 = i--6M cos -i- sin c_m

B67 = _ A67

sin _l(COS _i + cos _ ) sino o
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w68 = 20 - 20 - 2_oo m

9 2
A68 - 32 M sin

B68 = _ A68

2 2

sin _I sinm

(Y
o

_- sin _o

w69 = 2e°

= 9 M sin 2 _ sin 2_l(COS _ - cos 2_ )A69 64 m o o

B69 - A69

= - 2eoo70 2 0° m

9 2 2

A70 = - 6--4M sin _m(2 3 sin _i) sin 2_ °

B70 = A70

= -20 +_oo71 20 ° m o

_ 9
A71 64 M sin 2 _ sin 2_l(COS _ + cos 2_ )m o o

B71 = _ A71

= - 20 + 2_u°72 2 e° m o

c_
9 2 o

A72 = 3-_ M sin 2 _ sin2 _i cos _- sinm o

B72 = _ A72

_73 = 20o - 2% + _m- 2_o

Of
3 m

A73 = i--_M sin 2 --_ sin
m sin _l(COS _i - cos _ ) sino o

B73 = _ A73
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= - 2_ +_m _ow74 2 _o m

ol
3 2 m

A74 = - i--_M sin T sin c_ [(cos c_I + cos 2_i) (cosm o

- sin _i sin _o]

B74 - A74

- cos 2_ )
o

0075 = 2eo - 2em + Sm

of
9 2 m

A75 - 32 M sin z_ sin c_ sin 2c_1 sin 2_m o

B75 = _ A75

0o76 = 2_ ° - 20m + Sm + _o

Ol
_ 3 2 m

A76 16 M sin -_- sin C_m[(COS _I

B76 = _ A76

- cos 2_i) (cos _ + cos 2_ )o o

sin _i sin _o]

w77"
- 2_ +_ + "= 2 0o m m 2_o

ol
3 2 m

A77 - 16 M sin z_ sin m

B77 = _ A77

sin _l(COS _i - cos _ ) sino o

0_78 = 2_ ° - 2_m + 2_m- 2_o

__3 m 4
A78 4 M sin 4 _- cos

B78 = _ A78

_i C_o
_- sin2 --_ ¢_o

w79 : - 2_ + " - _O2 eO m 2_m

ot
=_3 m 2

A79 8 M sin 4 _- cos -_ sin _l(COS _o
2_

%- cos
o

B79 = _ A79
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= 28 + 2_0080 2@o m m

9 4_m 2

AS0 = - 3-_ M sin -_ sin

BS0 = _ A80

_i sin 2_ °

°°81 = 20o

A81

BSI

- 2_m + 2_m + _o

=_3 4_m _i
8 M sin --_ sin 2 -_- sin _l(COS _o

= _ ASI

+ cos 2C_ )
o

0082 = 20 - 2e + 2_ + 2_
o m m o

3 4 _m 4 _i 2 _o

A82 = _ M sin _- sin _- cos --_ sin _o

B82 = _ A82

w83-- 2@ O - 2,m 2_ O

= _3
A83 8 M sin 2 c_m

B83 = _ A83

_i 2 _o
sin4 --_ sin _- sin

o

%4 = 20o - 2#m - #o

3 2

A84 = I-_ M sin

B84 = _ A84

2 _i

sin _- sin _l(COSm o
- cos 2_ )

o

°°85 = 20 ° - 2_m

9 M sin 2 _ sin 2
A85 - 64 m _I sin 2_ °

B85 = _ A85



iii

0086= 2_°

A86 -_ 3 M sin 2
16 m

B86 = _ A86

2 _I
cos -_- sin _l(COS _ + cos 2_ )O O

0o87 = 2e ° - 2_m + 25 °

3 2

A87 = _ M sin

B87 = _ A87

4 _I 2 _o
cos cos sin

m -2- T o

w88 = 2_o - _m - 2_o

A88 -
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- -- M sin ot cos c_
16 m m

B88 = _ A88

sin _l(COS _I + cos _ ) sin
O O

W89 = 2_ °

3

A89 = i--_M sin _ cos _ [(cos ¢_I - cos 2_i) (cos _ - cos 2_ )m m o o

- sin _i sin _o]

B89 = _ A89

0090 = 2_o - _m

9

A90 - 32 M sin _ cos _ sin 2_ I sin 2_m m o

B90 = _ A90

°°91 = 2_o - _m + _o
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A91 = I-_ M sin _ cos _ [(cos _i + cos 2_i) (cos _ + cos 2_ )m m o o

- sin _i sin _o]

B91 = _ A91
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0092= 2eo - _m÷ 2_o
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B92 - A92

sin _l(COS _i ÷ cos _ ) sino o
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B93 = _ A93

sin _l(COS _I - cos _ ) sino o
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- sin _I sin _o]
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o

_95 = 2_O + _m
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B95 = _ A95

sin 2_ I sin 2_ °
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o
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BII 7 = _ All 7

= + 2e + _m 2_oWl 18 2 _o m

O_
3 2 m

All8 - 16 M cos -_ sin _ sin C_l(COS _i - cos c_ ) sinm o o
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w122 = 2_ + 2_ + _m + 2_oo m

3 2 m
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Appendix D

OSCILLATORY DEVIATIONS FROM STEADY-STATE REGRESSION

STATEMENT OF THE PROBLEM

In the body of this Report it is shown that under the influ-

ence of the assumed perturbing forces, a satellite orbit is subject to

a steady-state regression of the orbital plane. This motion is repre-

sented in Fig. 6 where the normal to the orbital plane traces out a

circle on the reference sphere at a constant angular rate.

Analytically, this motion is described by Eqs. (51) and (52), where

it is seen that there are oscillatory terms superposed on the steady-

state solutions for _ and 4" It is pointed out in Appendix C that these

solutions for _ and , are valid only if the oscillatory terms are small.

Therefore, this appendix investigates the magnitude of these residual

oscillations.

REFERENCE SYSTEM

To describe this oscillatory effect it is convenient to define an

X, Y coordinate system as shown in Fig. 26. This sytem moves in such

a way that the XY plane remains perpendicular to the steady-state or-

bital normal and also tangent to the reference sphere of Fig. 6. The

origin thus lies at the point of tangency, and the X axis remains tangent

to the steady-state Z axis trace of Fig. 6. In such a coordinate sys-

tem, any oscillatory components in either _ or _ results in a departure

of the instantaneous orbital normal from its steady-state position at

the origin of the X, Y system.
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Y

X

Instantaneous orbit normal

Steady-state orbit normal

Fig .26--Reference system for oscillatory deviations of the orbit normal
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OSCILLATORY MOTION

In the expressions for _ and , given by Eqs. (51) and (52), it is

assumed that at zero time all of the oscillatory components are in phase.

This can be generalized by introducing a new time origin at a time

and measuring time from this.

follows

Thus, Eqs. (51) and (52) are modified as

127

+ V A"
[cos wit - cos wi(T + t)]C_ = Olo /, OD.

i= 1 i

(D-I)

127
B

i Z _ [sin wi(_- + t) - sin _i'r]* = _0 t + sin _ w.
0 1

i=l

(D-2)

By making T large, the phases of the various components are essentially

random since the frequencies are assumed to be incommensurable.

From Eqs. (D-l) and (D-2), the X, Y coordinates of the intersection

of the instaneous orbital normal with the XY plane are given by

X = (4 - _o t) sin G O

127
B.

I _ [sin w. (T + t) - sin w.T]
OD. i 1

i
i=l

(D -3)

y = _ -
o

127
A.

= _ _ [cos w.T - cos 00.(T + t)]
.I, _D. I 1

1
i=l

(D-4)
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An examination of the expressions for the e. values in Appendix C showsl

that someof these can vanish for particular combinations of inclination

angle and orbital radius.

as follows

Those frequencies which can becomezero are

e2 = 2_o

ell= 26+

el2 = 2_ + 2_o

e23 = _m 2_o

e24 = _m _o

e27 = 2_m - 2_o

e29 = 2_m - _o

The contours in the r _ plane for which these frequencies vanish are
o o

shown in Fig. 27.

When a particular w. does become very small, the amplitude of
l

the corresponding low-frequency oscillatory terms in Eqs. (D-l) and

(D-2) become large due to the l/Co factor. However, the importance P
l

of such terms depends on the period of time over which the motion

is observed. For this reason, in the determination of the effective

oscillatory amplitude an observation period, T, is defined, and the

magnitude of the effective oscillation depends on this value of T.
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LEAST-SQUARES FIT

After selecting a value for the interval T, a linear least-squares

fit, X, is determined for the function X over this interval in the form

where

127 127

- Z 7X = b. + t bil• lo _

i=l i=l

B. w.T

Io 2 wiT 2 sin sin w.Ti
w.T
i

(D-5)

(D -6)

and

12B. w.T w.T

= 1 [2 sin l _____]il 3-----_ --_--- w.T cos cos Oo.T
w.T l i
I

(D-7)

The amplitudes of sin w.T and cos W.T in Eqs. (D-6) and (D-7) are shown
I l

in Figs. 28 and 29.

The function X represents the average trend of the function X over

T T

the interval between T - _ and T + _. The mean-square deviation of X

from X is then given by

T
+ --

2 i ? 2

= -- j [X - _--]2
_X T T

2

dt

1 72 Bi= -- -- [sin

1
T _T2 L i=l w.

W.(T + t)
i - sin tOi7] b°

IO
- biltl 2

dt

127 127

=Z ZXr 
r=l s=l

(D -8)
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where

Xrs = BrBs_[A cos(w r - Ws ) T

- B sin _T sin 00 T C cos w T cos _ T]
r s r s

(D-9)

and

A _ m
i r 2

2_rO0s L(Wr - _s)r

sin
(w r - _s)T

(_r + Ws)T

sin (D-IO)

B

_oT wT

2 f2 s in r s
2 2 T2 _ _ sin -_-

_D _0
r s

w w T (% + _s)!]r s sin
w + w 2
r s

(D-If)

C =

wT

12 f2 sin

3 3 T 4 [ 20J _0
r s

wT wT

WrT c°s +] [ 2 sin s-2

wT

- WsT cos _--] (D-12)

In a similar manner the trend of the function Y can be determined as

127 127

- 7 ZY = _ aio + t ail

i=l i=l

(D-13)
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where

AiEaio = --__ wiT
00.T

wiT 9

- 2 sin-_-j cos W.IT (D-14)

and

ail -

12A. r _.T wiT 9

i L2 sin i3 3 --_- - w.T cos -_--j sin 0_.T
w.T l 1

1

(D-15)

As before, the mean-square deviation of Y from Y is given by

T
+--

2 i _ 2

_Y = _ j Fy _]2 dt
T

2

i 7 FAi=- [cos w.m - cos W.(T + t)] - a.i l iO

_ ailt] I

2

dt

127 127

= V T y
L L_ rs

r=l s=l

(D-16)

where

Yrs = ArAs_A coS(_r w)T
S

- B cos w T cos w T
r s

- C sin tOr_ sin WsT ] (D-17)
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COMBINED EFFECT

As a result of the X and Y variations described above, the total

steady-state displacement of the normal of the orbital plane from the

origin of the X, Y system is given by

127 127

Do = _( ! aio) 2 + ( I bio) 2

i=l i=l

(D-18)

Since this quantity is a constant for the interval T, it can be absorbed

into the initial value of _ and the initial value of the regression
O

angle _o" This amounts to shifting the origin of the X, Y system by

an amount D
O

However, there is still a steady drift rate of the orbital normal

relative to this new origin, which can be expressed as

DI = ail ) + (bil) 2

i=l i=l

(D-19)

from which the total drift during the time interval T is given by

AD = DIT (D-20__

The mean-square deviation from this steady drift can be expressed

in terms of the components as

2 2 2

°D = °X + _Y

127 127

i (Xrs + Y ) (D-21)
L_J rs

r=l s=l
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From Eqs. (D-9) and (D-17) the argument of Eq. (D-21) can be expressed

as

x +y = + FA-crs rs (ArAs BrBs) u--_- + cos -r s

+ (ArA s -BrB s) _A2C A_B_ cos(w + _ )7 (D-22)r s

Thus, the deviation of the orbital regression from a steady-state

motion can be described by the drift, AD, and the deviation from this

drift, OD"

NUMERICAL RESULTS

Drift

In the determination of _D it is seen from Eqs. (D-7), (D-15), (D-19)

and (D-20) that &D is a function not only of the averaging interval T but

also the arbitrary time 7. However, the result should be independent of

7, and it appears reasonable to replace cos _.T and sin _.7 by their root-
1 1

mean-square value of 1/K in the evaluation of AD.

By means of the relations developed above, the value of AD can be

computed as a function of the orbital inclination angle of a synchronous

altitude satellite for values of T equal to 50, i00 and 500 years. The

results of these computations are shown in Fig. 30. It should be note'd

that the summations are taken over only the twelve lowest frequency terms,

which are Wl, _2 and _23 through _32" It is found that the contributions

of the terms whose frequencies involve Sm' _ and 0o' are negligible. In

Fig. 30 it is seen that for values of T which are appreciably larger than

the oscillatory periods included, the values for AD are independent of
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T and less than .5 ° However as _o• , approaches 90 ° the value of _2 or

24o approaches zero. In this region of high inclination the summations

in Eq. (D-19) are dominated by the terms a21 and b21 , which have the form

shown in Fig. 29. Thus, the fluctuations in Fig. 30 are simply a re-

flection of Fig. 29 plotted as a function of _ . The magnitude of the
O

maximum at _o = 90o increases with the averaging time, T.

For comparison, Fig. 31 shows the variation of AD for an orbital

radius of 4 earth radii and for T equal to I00 years. In this case,

several maxima exist, as would be expected from Fig. 27. The maximum

at _o _ 50o results from both _24 and _27 approaching zero while _23

70o; as before, w 2 causes a maximum at _ = 90 °gives a maximum at _o o "

The maxima again are due to the dominance of the terms associated with

the near-zero frequencies, and in the case of those at 50 ° and 70 ° the

form of Fig. 29 appears above and below the zero frequency position, re-

sulting in a symmetrical peak at each of these positions• As in the

previous case, these maxima are accentuated as T increases, while the

general level of the rest of the curve is relatively constant for values

of T greater than the oscillatory periods.

On the basis of Figs. 30 and 31 as well as other cases not shown

here, it is found that the general level of AD decreases as the orbital

altitude decreases, p

Mean-Square Deviation

_ by means of Eqs. (D-21) and (D-22)In the determination of it

2

is again found that _D depends on T as well as T. However, examination

of the argument of Eq. (D-21) as expressed in Eq. (D-22) shows that the

maximum value of X + Y is given by
rs rs
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 XrsYrs maxl ArAs

+I ArAs_ <A c (D-23)

2

Thus, an upper bound on OD can be established by the relation

127 127

2

r=l s=l

(Xrs + Yrs)max (D-24)

2

The mean-square deviation _D is evaluated as a function of the orbital

inclination of a synchronous altitude orbit for values of T equal to 50,

I00 and 500 years. The results are shown in Fig. 32. The summations of

Eq. (D-24) are taken over the twelve lowest frequency terms, as in the

case of AD.

An examination of Fig. 32 shows that for all values of T the curves

• However, as _ in-are essentially the same for the lower values of d ° o

creases, _D goes through a maximum• The height of this maximum increases

with T, while the corresponding value of _ approaches 90 °. As in the
o

case of AD this maximum results from the fact that w 2 is approaching zero

and the summation in Eq. (D-24) is dominated by the term (X22 + Y22)m_x.

Figure 33 represents the limiting curveJ for Eq. (D-22) when r = s. Thus,

the heavy portions of these curves represent (X.li + Yii)max which appears

2

in OD" A comparison of Fig. 33 and Fig. 32 shows that the maximum in

Fig. 32 is equivalent to a plot of Fig. 33 as a function of _ for i = 2.
o

In view of the long solution time required to determine the curves

in Fig. 32, less detailed information is available for other orbital
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0

altitudes. However, it is found that the magnitude of _
decreases

with the orbital radius.

2

Figure 34 shows the details of the OD curve for an orbital radius

of 4 earth radii and an averaging time of 500 years for inclination

angles in the vicinity of _ = 50 °. This corresponds to the region in
O

which both w24 and w27 vanish. It is seen that maxima occur on either

side of the value of d ° for which the two frequencies vanish. The shape

of these maxima is also related to that shown in Fig. 33 for i = 24

and 27.

DISCUSSION

On the basis of the foregoing analysis, it is seen that the values

of both AD and d D increase with orbital radius. Since the highest radius

orbit considered here is that at synchronous altitude, Figs. 30 and 32

represent upper bounds for &D and OD respectively. An examination of

Figs. 30 and 32 shows that both the total drift and the root-mean-square

deviation are less than .5 ° as long as the averaging time is appreciably

larger than the periods of the oscillations included and if the orbital

inclination angle, _ , is less than about 75 °. For orbital inclinations
O

between 75 ° and 90 ° , significant peaks occur in the curves for both _D

and _D" Thus, the steady-state motion described by Eqs. (57) and (58)

is not valid at these high inclination angles where _ becomes very small.

As indicated previously, the behavior of these high-inclination orbits

is determined in Appendix F.

Thus, it is seen that for inclination angles up to about 75 ° the

normal to the orbital plane deviates less than .5 ° from its position

as described by Eqs. (57) and (58). For an inclination greater than



c0
¢,"1

0

C

0
0
>,,,

0
0

f

Z_

It') 0 k¢)

0

0
,0

o')
0

0 "10
tO v

0

bO

0

t.2

0

t-
O

o_
,4--

o
t-

O

0

0

4..- _

0 "o

e- t-"
,,I,-

0 IJ

e-
o-_-

0

-0

0

e'-
13

E

0
0

I

13)



139

75 °, the regression may take place about the x I axis as described in

Appendix F. Since these high-inclination orbits are of less interest,

the contributions of the residual oscillatory terms for this second

type of regression have not been evaluated. However, it does not appear

that any large oscillatory contribution would result since many of the

A° and B. values vanish at an inclination of 90 ° .
i l
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Appendix E

LUNAR REGRESSION

The satellite equations of motion developed in Appendix B should

also apply to the case of the earth's most prominent satellite, the

moon. However, as indicated earlier, it is necessary to go to a higher

order approximation of the solution before the moon's orbital regression

can be adequately described. The details of this determination are pre-

sented below.

MODIFICATION OF EQUATIONS OF MOTION

The general equations of motion of an earth satellite, including per-

turbations due to earth oblateness, the sun and the moon, are developed

in Appendix B as Eqs. (B-57) through (B-60). In applying these equations

to the case of the moon, a number of simplifcations can be made.

Of the three perturbations considered, the only significant one

in the case of the moon is that due to the sun. At the moon's altitude

the effect of earth oblateness is negligible, and the moon obviously

cannot act as a perturbing influence on itself. Thus, the right side of

Eqs. (B-57) through (B-60) should be modified by setting J2 and em equal

to zero.

In the original development, the reaction of the satellite on the

earth is neglected. However, this is not possible for a satellite

as large as the moon. Thus, in Eq. (B-57) it is necessary to replace

GM E by G(M E + Mm).

An examination of Eq. (54) shows that since the earth oblateness

effect is negligible (J2 = 0), the angle _I is zero. Thus, the reference
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plane becomes the plane of the ecliptic, and the Xo, Yo' Zo and Xl, YI'

z I reference systems are identical.

Finally, it can also be assumed that the moon's orbital inclination

to the ecliptic is sufficiently small that cos _ is unity while sin

is equal to _.

Under the above assumptions, Eqs. (B-57) through (B-60) become

2 2 G(ME + Mm)

d---/! - pw = 2
dt 2 p

_2_i 3(i rl )2] (E-I)

_t[p2w] = 3p2_2(rl T) (_I 7) (E-2)

302(71 Y) (_i " _) sin e
(E-3)

00_ = 3_2(ri _) (r I • _) cos .A (E-4)

where

and r has been replaced by p.

By means of the direction cosines listed in Appendix A, the scalar

products can be expressed as

(r I • T) = cos(8 - ® + 9) (Z-6)
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(r I j) = sin(@ - ® + _) (E-7)

(r I • k) = - _ sin(® - _) (E-8)

Substitution of Eqs. (E-6) through (E-8) in Eqs. (E-I) through (E-4) gives

+ Mm)
d2p _ Pw 2 = _ 2

dt 2 p

+ T i + 3 cos 2(0 + _ - ®)j (E -9)

Tt 3 p2_2(p2w) = - _ sin 2(e + 4 - ®) (E-IO)

3_ 2

4 = - --_ sin @ sin(® - 4) cos(@ + 4 - ®) (E-If)

; 3_ 2
= --a cos e sin(® - 4)cos (e + 4 - ®) (E-12)

0J

These expressions represent the desired equations of motion of the moon

relative to the earth as affected by solar perturbations.

METHOD OF SOLUTION

In the case of the moon, it is not possible to determine _ and

by substituting the unperturbed values of 8 and w in Eqs. (E-If) and
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(E-12). Instead, it is necessary to take into account the effect of

perturbations in w and 0 on the equation for _ and _, which in turn

necessitates a solution for the perturbed in-plane motion as described

by Eqs. (E-9) and (E-10).

In-Plane Equations

If w represents the observed sidereal rate of the moon around the
o

earth, then the corresponding orbital radius in the absence of pertur-

bations is defined by the relation

G(M E + Mm)Po = w2 (E-i3)
o

Substitution of Eq. (E-13) in Eq. (E-9) gives

3 2

d2p _ 2 PoUOo
pw = 2

dt 2 p

+ 2_ _i + 3 cos(e + _ + @)] (E -14)

as the form of the radial in-plane equation.

While Po and w° are the unperturbed solutions of Eqs. (E-10) and

(E-14), the quantities 6@ and 6w represent the perturbations to these

solutions which occur due to the sun. By making the following substi-_

tutions in Eqs. (E-10) and (E-14),

P = Po + 6p (E-t5)

w = w + 6w (E-16)
O,
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= %t (E-17)

@ + , = w t (E-18)
O

w - _ = _ (E-19)
O

the following perturbation equations are obtained in terms of 6p and

6tO.

.2

Po ® I- 2_tjd26p 3u026p 2 w I I + 3 cos
2 - o - Po _o 6 - 2 L

dt
(E -20)

32"2

2 d6w_ Po® 2_t
d60 + Po sin2°°oPo dt dt 2 (E -21)

The solution to these equations is given by

2

I < 6Wo,, (2 + m)6p = 2 26Po + Po -T_--_) - p°m ]
2(1 - m) J

0

F (36 + ++ cos _ ti - PoO L 2Po --w---
0

2
2Po m (3 - m - m 2)

3 - 8m + 4m 2 J

2

I- pom (2 - m) ]

- cos 2_t 4m2) JL 6(1 -m) (3 - 8m +

(E -22)
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and

W L- _- 26po + w l +
0 0 0

m2(5 + 4m)]

4(1 - m) J

[-_o ( 2p°6w°\+ 2 cos _o t 36Po + 7 ',#
0

2m 2 (3 - m - m 2)

+ cos 2_tf' 3m2(Ii - 12m + 4m2), "]

L4(I - m) (3 - 8m + 4m2) j

(E -23)

where m is the ratio of the earth's angular rate around the sun to the

moon's angular rate around the earth, and 6P and 6w
O O

are the initial

values of 6p and 6w.

Since 6p ° and 6w are arbitrary constants, they can be used to sim-
O

plify the above solution by setting the coefficient of cos w t and the
O

constant term in Eq. (E-23) equal to zero as follows

po 6wo Po m2(5 + 4m)

26 Po + - (E -24)w 12(1 m)
0

2 0o m2 (3 22Po6Wo - m - m )

36 Po + = (E -25->
Wo 3 - 8m + 4m 2

These two conditions reduce Eqs. (E-22) and (E-23) to

6p=

2

po m 3Po m2(2 - m)

6 2(1 m) (3 8m + 4m 2) cos 2st
(E -26)
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and

3w (ii - 12m+ 4m2)
6w o= cos 2 t

4(1 - m) (3 - 8m + 4m 2)

(E -27)

Substitution of these values of 6P and 6w in Eqs. (E-15) and (E-16)

gives the perturbed solutions for p and w as

2

P = 0o[i - m I i + -_ m) cos ]6 - m2 19 2_t (E-28)

85 m 3) 2_t]00 = _o_i + I_ m2 + T_ cos (E -29)

where powers of m greater than three are neglected in the expansion of

8 p and 6w.

From Eqs. (E-28) and (E-29) it is seen that as a result of the

choice of 60o and 6_ , the perturbed solution still has the observed meano

orbital rate w . However, to achieve this, the mean orbital radius must
o

be less than the unperturbed radius by an amount O m2/6, which is of the
o

order of 220 mi.

Out-of-Plane Equations

Regression. It is now possible to determine the moon's regression

rate, ,, by means of Eq. (E-II), which can be transformed into the follow-

ing form:

= 3Q 2 f
4w _i - cos 20 - cos 2(_ - _)

+ cos 2(0 + _ - ®)] (E -30)
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If @oand 6_ represent the steady-state and oscillatory components, re-

spectively, of the regression rate, then _ can be represented as

= @o+ 6_ (E-31)

and the problem reduces to a determination of _II° from Eq. (E-30). Be-

fore this can be done, it is necessary to obtain expressions for the

quantities 0 and _ as functions of time as follows.

From Eq. (E-5), @can be expressed as

= oo- $

= ooo- $o + 60J- 65 (E-32)

which can be integrated to give

I"@= (w° - _o) t + 6oodt - j 6$dt (E-33)

Since the quantities 6ooand 6_ by definition have no steady-state value,

their integrals will represent small oscillatory angles•

Similarly, the angle _ can be expressed as

= _o t + _ 6_dt

P

(E -34)

If Eqs. (E-17), (E-29), (E-32)and (E-34)are substituted in Eq. (E-30),

4
the following expression for _ is obtained to the order of m
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3wm2 [
o ii Ii

= 4 (i _--m2) - (i -_ m2) cos 2(Wo _o) t

- (1 il 2)
-_-m cos 2(_ - _o ) t

ii

+ (i - -_-m 2) cos 2(w ° - Q) t

Ii 2

+ _ m cos 2(W_o - 2Q + T_o) t

- 2fsinL 2(O0o - _o ) t + sin 2(3-_o ) tJ f6_dt]
(E -35)

The values of _o and 6_ can be determined by successive iterations of

Eq. (E-35) as follows. As a first approximation

2
3wm

o ii 2_

_o = 4 (i - -_- m ) (E-36)

while 6_ is given by the remainder of Eq. (E-35), neglecting the

integral term

2
3w m

o [- (i ii 2)6_ = 4 - _-m cos 2(0_° - _o ) t

(i -_-mll 2 _ 591__m3) cos 2(_ - _o ) t

+ other oscillatory terms] (E -37)
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Integration of Eq. (E-37) gives

3 2 Es_6_dt = _ m in 2(_O _o) t

+ 1 (1 3m -5 m) sin 2(_ $o) t

-i
+ other oscillatory termsJ (E-38)

Substitution of Eq. (E-38) in Eq. (E-35) gives an improved determination

of _ in the form

2
3_m

o _(i
3 91
_m - _m 2)

+ oscillatory termsJ (E-39)

A second iteration is not necessary since no additional terms of the order
4

of m arise in the steady-state regression rate. Thus, the regression

rate of the moon is given by

_3 m2 9 3 273 _ (E-40)_o o 4 32 128- _ -- - --m m4

which is identical with the expression determined in Ref. 3 using the

method of Delaunay.

By equating the steady-state parts of Eq. (E 5), the mean angular

rate _ is obtained as
o

= w - _ (E-41)_0 0 0
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which when combined with Eq. (E-40) gives

= w _i + 3 2 9 3 273 m 4] (E-42)o O L _ m - 3-_ m - 12---8

Since the angle 0 is measured from the line of nodes, the period associ-

0o is the nodical period or the period between passages of
ated with

the ascending node, while the period associated with _ is the sidereal
O

period as indicated previously. The relation of these two periods is

thus obtained from Eq. (E-42) as

TS TN [ 3 2 9 3 273 m4 ] (E-43)= i + _ m - 3--_m - 12---_

Inclination. It is also possible to determine the variation in

orbital inclination by expanding Eq. (E-12) as follows

32_ r|sin 2@ - sin 2(@ - ® + 4)
4w

+ sin 2(0 - ,)] (E-44)

A comparison with Eq. (E-30) shows that the oscillatory amplitudes in

Eq. (E-44) are reduced considerably by the factor _ which is equal to

about .i rad. Thus, the determination of _ is somewhat simpler than

that of _ described above.

Equation (E-44) can be written in the form
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o

Of --

2

3°°°m4 _ [sin 2(m ° - _o ) t

- sin 2(000 _) t

+ sin 2(4 - $o) tj (E -45)

where co is replaced by w and the terms in 6w and 6_ are neglected.
O

Integration of Eq. (E-45) gives

2
3win

l°g cz-_o o f i. (1 - cos 2(0: ° _o ) t)8 k
LO - 11
O " O

Cb
O

1

- ®

i - cos 2(w ° - _)t)

+ i (i - cos 2(4 - _io) t)] (E-46)

(8 $o)

and since the terms on the right are small, Eq. (E-46) can be expressed

2
to the order of m as

3m2_

cos 2(4 - }o ) t)

cos 2(m ° - }o ) t

+ cos 2(m ° - 4) t] (E -47)
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The constant term inside the bracket can be absorbed in _ so thato

3m2_
o

o 8
r!
Lm cos 2(0 - _o) t

+ cos 2(w ° $o ) t - cos 2(_ ° - $) t] (E-48)

The first and largest of the oscillatory terms in Eq. (E-48) has an

amplitude of 3m_ /8 or about 8.6 min of arc, while the other two have
o

amplitudes of about .6 min of arc.

Thus, it is seen that the inclination of the moon's orbit remains

essentially constant.
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Appendix F

REGRESSION OF HIGH INCLINATION ORBITS

INTRODUCTION

In the body of this Report, the solutions for the orbital inclination

angle, _, and orbital regression angle, _, are given by Eqs. (51) and (52).

In order to obtain these expressions it was assumed that where # appears

on the right side of Eqs. (37) and (38) it can be replaced by _o t. In

view of the fact that _o is proportional to the cosine of the inclination

angle, it becomes very small as the inclination approaches 90 ° . An exam-

ination of the resulting solution for _ given by Eq. (52) shows that under

these conditions the oscillatory terms are no longer negligible. Thus,

for high-inclination orbits, the above assumption does not hold. This is

indicated by the increase in the values of AD and _D in the vicinity of

90 ° as shown in Figs. 30 and 32. While the assumption does appear to be

valid up to inclinations of the order of 75 ° , it is of interest to in-

vestigate the behavior of higher inclination orbits.

METHOD OF ANALYSIS

the substitution of _o t for @ is not made, then Eqs. (49) and (50)If

can be written in the form

127

= A I sin _ + A 2 sin 2_ + I A i sin w.tl (F-I)

i=3

o sin EB I cos _ + B 2 cos 2#

127

+ I Bi cos wit]

i=3

(F-2)
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While _ is also present in the other oscillatory terms, it constitutes

a siowly varying phase angle of a higher frequency oscillation and can

be neglected. However, when it stands alone, as in the first two oscil-

latory terms, it must be considered. An examination of the numerical

values of A and B shows that the summation terms in Eqs. (F-l) and (F-2)

are negligible, so that

= A I sin _ + A 2 sin 24 (F -3)

_ = _o + isin c_ E BI cos _ + B 2 cos 2,_ (F-4)

If the reference plane is defined in the same manner as before to make

A I and B I zero, then Eqs. (F-3) and (F-4) can be expressed as

= Q sin _ sin 2_ (F-5)

= - (P - Q cos 24) cos (F -6)

where P and Q are defined by Eqs. (C-7) and (C-8) of Appendix C.

Combination of Eqs. (F-5) and (F-6) gives the relation

d___ = _ q sin _ sin 24

d_ (P - Q cos 2_)cos
(F-7)

which can be integrated to give

i - Q cos 24o
sin _ = sin _o Q cos 24

(F-8)



157

as the functional relation between d and _. The quantities d and *oO

represent the initial values of _ and _, and, in accordance with Eqs. (51)

and (52), _o is equal to zero when _ equals _o. Thus, Eq. (F-8) becomes

_p P - Q (F-9)sin _ = sin _o - Q cos 2_

However, for the purposes of this analysis it is more convenient to select

t Under these
the initial position when _ is 90 ° and _ has a value of _o"

conditions, Eq. (F-8) becomes

' 4/_ P + q "' (F-10)

sin _ = sin _o _F Q cos 24

!
while _ and

O O
are related by the expression

t = sin _ 4/_ (F-II)
sin d ° o

By means of Eq. (F-10), the trace of the normal to the orbital plane on

!

a unit sphere can be determined for any given value of d o. In Fig. 35,

several of these traces are shown for various orbital inclinations of a

synchronous altitude orbit. In this figure, the angle _ is measured in P

the xlY 1 plane from the negative Yl axis while d is the elevation angle

f

measured from the z 1 axis. It is seen that for values of _o up to about

75 ° the traces encircle the z axis at a relatively constant value for
1

the inclination angle, _. This corresponds to the regression described

in the body of the report and pictured in Fig. 6.
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Fig.35--Regression of a synchronous altitude orbit
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!

For values of _ such that
O

sin s > __

o _P+ Q
(F-12)

the nature of the traces change and they become elongated ellipses which

encircle the x I axis.

The boundaries between the two types of trace correspond to the con-

ditions

sin _o (F-13)
_P+Q

or a value _' = 78o53 ' for synchronous altitude orbits.
O

The actual con-

tours lie in planes including the Yl axis and inclined at angles of

Iii°7 ' to the xlY I reference plane.

The periodicity of the motion corresponding to these traces can be

determined if the angle _ is eliminated between Eqs. (F-6) and (F-10) to

give

2 t Q sin 2 t= - (P Q cos 2_) (P cos d O _o - Q cos 24) (F-14)

which can be solved for t in the form

t = - |
J

dx

_(p 2 t sin 2 t
v - Q cos 2_) (P cos do - Q _o - Q cos 2_)

(F-15)

By means of the transformations given in Ref. 4, Eq. (F-15) can be ex-

pressed as an elliptic integral of the first kind. The resulting
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expression for the period of the motion is given by the following equations.

If-sin C_to__P---_p+ Q , then

]7

T = 4 _ 2 d_ (F-16)

_p2 2 , o _ k 2 2- Q cos _ I - sin
O

where

k 2 2Q tan 2 t= _ (F-17)
P - Q o

If sin d°

T __ 4 f
I

d_

2Q(P + Q) sin c_° o _i k 2 sin 2

(F_lS)

where

k 2 = P - Q (F-19)
2 t .

2Q tan
O

Thus, it is seen that the period given by Eq. (F-16) corresponds to th_

more conventional regression about the zI axis while that given by Eq. (F-18)

is associated with the elongated elliptical traces of Fig. 35. A plot of

the regression period as a function of t is shown in Fig. 36.
O
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RESULTS AND DISCUSSION

In the body of the Report it is shown that the xlY I plane has the

property that an orbit in this plane would maintain its orientation

relative to inertial space. However, an examination of Fig. 35 shows

that a second stable configuration exists with the orbit in the YlZl

plane. Since the earth's axis lies in this plane, such an orbit would

not only remain fixed relative to inertial space but would remain polar

relative to the earth. On the other hand, an orbit established in the

XlZ I plane is in unstable equilibrium and may regress about either the

x I or z I axis, depending on the direction of its initial disturbance.

In order to compare the regression periods determined by this method

with those shown in Fig. 7, it is necessary to express Eq. (F-16) in terms

of the inclination angle when _ is equal to zero. This is done by com-

bining Eqs. (F-II) and (F-16) to give

I 14 _2 d@ I (F-20)

T ffiP c°s _° _I k 2 _ 2sin 2 _ (i - )_i + 2Q cos
P - Q o

As compared with the expression

2_
m

T P cos _ _-21)
o

determined in the body of the Report as Eq. (62). Figure 37 is a plot

of Eqs. (F-20) and (F-21) for synchronous altitude orbits. It is seen

that the agreement is excellent up to large values of _ .
o
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Fig. 37--Comparison of Eqs. (F-20)and (F-21)for regression period
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The maximum variation of orbital inclination during regression about

the zI axis is equal to the difference between _o and t.o This can be

seen in Fig. 35, where the _ values are indicated relative to the actual
o

position of the trace when it crosses the YlZl plane. It is seen that

the variation is relatively small, having reached a value of only 5 ° at

an inclination of 75 ° . Thus, the representation of this type of re-

gression by a conical motion of the normal to the orbital plane as shown

in Fig. 6 also appears to be valid as long as the regression is about

the z I axis.

The results obtained in this appendix are in excellent agreement

with those obtained in Ref. 5 by Allan and Cook who used eigenvalue

methods to determine the nature of the regression and its periodicity.
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